Publication:
Suppression of Atlantic Meridional Overturning Circulation Variability at Increased CO 2

No Thumbnail Available

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Meteorological Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

MacMartin, Douglas G., Laure Zanna, and Eli Tziperman. 2016. “Suppression of Atlantic Meridional Overturning Circulation Variability at Increased CO2.” Journal of Climate 29 (11): 4155–64. https://doi.org/10.1175/jcli-d-15-0533.1.

Research Data

Abstract

Multidecadal variability in the Atlantic meridional overturning circulation (AMOC) is shown to differ significantly between the 4 x CO2 and preindustrial control simulations of the GFDL Earth System Model, version 2M (ESM2M) general circulation model (GCM). In the preindustrial simulation, this model has a peak in the power spectrum of both AMOC and northward heat transport at latitudes between 26 degrees and 50 degrees N. In the 4 x CO2 simulation, the only significant spectral peak is near 60 degrees N. Understanding these differences is important for understanding the effect of future climate change on climate variability, as well as for providing insight into the physics underlying AMOC variability. Transfer function analysis demonstrates that the shift is predominantly due to a shift in the internal ocean dynamics rather than a change in stochastic atmospheric forcing. Specifically, the reduction in variance from 26 degrees to 45 degrees N is due to an increased stratification east of Newfoundland that results from the shallower and weaker mean overturning. The reduced AMOC variance that accompanies the reduced mean value of the AMOC at 4 x CO2 differs from predictions of simple box models that predict a weaker circulation to be closer to a stability bifurcation point and, therefore, be accompanied by amplified variability. The high-latitude variability in the 4 x CO2 simulation is related to the advection of anomalies by the subpolar gyre, distinct from the variability mechanism in the control simulation at lower latitudes. The 4 x CO2 variability has only a small effect on midlatitude meridional heat transport, but does significantly affect sea ice in the northern North Atlantic.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories