Publication:
Quantification of Volumetric Morphometry and Optical Property in the Cortex of Human Cerebellum at Micrometer Resolution

No Thumbnail Available

Date

2021-12-01

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Liu CJ, Ammon W, Siless V, Fogarty M, Wang R, Atzeni A, Aganj I, Iglesias JE, Zöllei L, Fischl B, Schmahmann JD, Wang H. Quantification of volumetric morphometry and optical property in the cortex of human cerebellum at micrometer resolution. Neuroimage. 2021 Dec 1;244:118627. doi: 10.1016/j.neuroimage.2021.118627. Epub 2021 Oct 2.

Research Data

Abstract

The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases.

Description

Keywords

Cognitive Neuroscience, Neurology

Terms of Use

Endorsement

Review

Supplemented By

Referenced By

Related Stories