Publication: Genomic Analysis of the Evolution of Fluoroquinolone Resistance in Mycobacterium tuberculosis Prior to Tuberculosis Diagnosis
No Thumbnail Available
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Microbiology
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Zhang, Danfeng, James E. Gomez, Jung-Yien Chien, Nathan Haseley, Christopher A. Desjardins, Ashlee M. Earl, Po-Ren Hsueh, and Deborah T. Hung. 2016. “Genomic Analysis of the Evolution of Fluoroquinolone Resistance in Mycobacterium Tuberculosis Prior to Tuberculosis Diagnosis.” Antimicrobial Agents and Chemotherapy 60 (11): 6600–6608. doi:10.1128/AAC.00664-16.
Research Data
Abstract
Fluoroquinolones (FQs) are effective second-line drugs for treating antibiotic-resistant tuberculosis (TB) and are being considered for use as first-line agents. Because FQs are used to treat a range of infections, in a setting of undiagnosed TB, there is potential to select for drug-resistant Mycobacterium tuberculosis mutants during FQ-based treatment of other infections, including pneumonia. Here we present a detailed characterization of ofloxacin-resistant M. tuberculosis samples isolated directly from patients in Taiwan, which demonstrates that selection for FQ resistance can occur within patients who have not received FQs for the treatment of TB. Several of these samples showed no mutations in gyrA or gyrB based on PCR-based molecular assays, but genome-wide next-generation sequencing (NGS) revealed minority populations of gyrA and/ or gyrB mutants. In other samples with PCR-detectable gyrA mutations, NGS revealed subpopulations containing alternative resistance-associated genotypes. Isolation of individual clones from these apparently heterogeneous samples confirmed the presence of the minority drug-resistant variants suggested by the NGS data. Further NGS of these purified clones established evolutionary links between FQ-sensitive and-resistant clones derived from the same patient, suggesting de novo emergence of FQ-resistant TB. Importantly, most of these samples were isolated from patients without a history of FQ treatment for TB. Thus, selective pressure applied by FQ monotherapy in the setting of undiagnosed TB infection appears to be able to drive the full or partial emergence of FQ-resistant M. tuberculosis, which has the potential to confound diagnostic tests for antibiotic susceptibility and limit the effectiveness of FQs in TB treatment.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service