Publication:
A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the beta subunit and the primary sigma subunit.

No Thumbnail Available

Date

2009

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Cold Spring Harbor Laboratory Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Rao, X., P. Deighan, Z. Hua, X. Hu, J. Wang, M. Luo, J. Wang, et al. 2009. “A Regulator from Chlamydia Trachomatis Modulates the Activity of RNA Polymerase through Direct Interaction with the Subunit and the Primary Subunit.” Genes & Development 23 (15): 1818–29. https://doi.org/10.1101/gad.1784009.

Research Data

Abstract

The obligate intracellular human pathogen Chlamydia trachomatis undergoes a complex developmental program involving transition between two forms: the infectious elementary body (EB), and the rapidly dividing reticulate body (RB). However, the regulators controlling this development have not been identified. To uncover potential regulators of transcription in C. trachomatis, we screened a C. trachomatis genomic library for sequences encoding proteins that interact with RNA polymerase (RNAP). We report the identification of one such protein, CT663, which interacts with the beta and sigma subunits of RNAP. Specifically, we show that CT663 interacts with the flap domain of the beta subunit (beta-flap) and conserved region 4 of the primary sigma subunit (sigma(66) in C. trachomatis). We find that CT663 inhibits sigma(66)-dependent (but not sigma(28)-dependent) transcription in vitro, and we present evidence that CT663 exerts this effect as a component of the RNAP holoenzyme. The analysis of C. trachomatis-infected cells reveals that CT663 begins to accumulate at the commencement of the RB-to-EB transition. Our findings suggest that CT663 functions as a negative regulator of sigma(66)-dependent transcription, facilitating a global change in gene expression. The strategy used here is generally applicable in cases where genetic tools are unavailable.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories