Publication:
Enrichment of the Intergalactic Medium by Radiation Pressure Driven Dust Efflux

No Thumbnail Available

Date

2000

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Astronomical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Aguirre, Anthony, Lars Hernquist, Neal Katz, Jeffrey Gardner, and David Weinberg. 2001. “Enrichment of the Intergalactic Medium by Radiation Pressure–driven Dust Efflux.” The Astrophysical Journal 556 (1): L11–15. https://doi.org/10.1086/322860.

Research Data

Abstract

The presence of metals in hot cluster gas and in Ly absorbers, as well as the mass-metallicity relation of observed galaxies, suggest that galaxies lose a significant fraction of their metals to the intergalactic medium (IGM). Theoretical studies of this process have concentrated on metal removal by dynamical processes or supernova-driven winds. Here we investigate the enrichment of the IGM by the expulsion of dust grains from galaxies by radiation pressure. We use already completed cosmological simulations to which we add dust, assuming that most dust can reach the equilibrium point between radiation pressure and gravitational forces. We find that the expulsion of dust and its subsequent (partial) destruction in the IGM can plausibly account for the observed level of C and Si enrichment of the z = 3 IGM. At low z, dust ejection and destruction could explain a substantial fraction of the metals in clusters, but it cannot account for all of the chemical species observed. Dust expelled by radiation pressure could give clusters a visual opacity of up to 0.2-0.5 mag in their central regions, even after destruction by the hot intracluster medium; this value is interestingly close to limits and claimed observations of cluster extinction. We also comment on the implications of our results for the opacity of the general IGM. Finally, we suggest a possible "hybrid" scenario in which winds expel gas and dust into galaxy halos but in which radiation pressure distributes the dust uniformly through the IGM.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories