Publication:
Specific Cleavage of α-Fodrin during Fas- and Tumor Necrosis Factor-induced Apoptosis Is Mediated by an Interleukin-1β-converting Enzyme/Ced-3 Protease Distinct from the Poly(ADP-ribose) Polymerase Protease

No Thumbnail Available

Date

1996

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Society for Biochemistry and Molecular Biology
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Cryns, Vincent L., Louise Bergeron, Hong Zhu, Honglin Li, and Junying Yuan. 1996. “Specific Cleavage of α-Fodrin during Fas- and Tumor Necrosis Factor-Induced Apoptosis Is Mediated by an Interleukin-1β-Converting Enzyme/Ced-3 Protease Distinct from the Poly(ADP-Ribose) Polymerase Protease.” Journal of Biological Chemistry 271 (49): 31277–82. https://doi.org/10.1074/jbc.271.49.31277.

Research Data

Abstract

Interleukin 1 beta-converting enzyme (ICE)/Ced-3 proteases play a critical role in apoptosis. One well characterized substrate of these proteases is the DNA repair enzyme poly(ADP-ribose) polymerase. We report here that alpha-fodrin, an abundant membrane-associated cytoskeletal protein, is cleaved rapidly and specifically during Fas- and tumor necrosis factor-induced apopto sis; this cleavage is mediated by an ICE/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease. Studies in cells treated with these apoptotic stimuli reveal that both fodrin and poly(ADP-ribose) polymerase proteolysis are inhibited by acetyl-Tyr-Val-Ala-Asp chloromethyl ketone and CrmA, specific inhibitors of ICE/Ced-3 proteases. However, fodrin proteolysis can be distinguished from poly(ADP-ribose) polymerase prote olysis by its relative insensitivity to acetyl-Asp-Glu-Val-Asp aldehyde (DEVD-CHO), a selective inhibitor of a subset of ICE/Ced-3 proteases that includes CPP32. DEVD-CHO protects cells from Fas induced apoptosis but does not prevent fodrin proteolysis, indicating that cleavage of this protein can be uncoupled from apoptotic cell, death. Moreover, purified fodrin is cleaved in vitro by CPP32 (but not by ICE) into fragments of the same size observed in vivo during apoptosis. These findings suggest that fodrin proteolysis in vivo may reflect the activity of multiple ICE/Ced-3 proteases whose partial sensitivity to DEVD-CHO reflects a limited contribution from CPP32, or an ICE/Ced-3 protease less sensitive than CPP32 to DEVD-CHO inhibition.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories