Publication: Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility
No Thumbnail Available
Open/View Files
Date
2015
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Kieser, Karen J., Catherine Baranowski, Michael C. Chao, Jarukit E. Long, Christopher M. Sassetti, Matthew K. Waldor, James C. Sacchettini, Thomas R. Ioerger, and Eric J. Rubin. 2015. “Peptidoglycan Synthesis inMycobacterium Tuberculosisis Organized into Networks with Varying Drug Susceptibility.” Proceedings of the National Academy of Sciences 112 (42): 13087–92. https://doi.org/10.1073/pnas.1514135112.
Research Data
Abstract
Peptidoglycan (PG), a complex polymer composed of saccharide chains cross-linked by short peptides, is a critical component of the bacterial cell wall. PG synthesis has been extensively studied in model organisms but remains poorly understood in mycobacteria, a genus that includes the important human pathogen Mycobacterium tuberculosis (Mtb). The principle PG synthetic enzymes have similar and, at times, overlapping functions. To determine how these are functionally organized, we carried outwhole-genome transposon mutagenesis screens in Mtb strains deleted for ponA1, ponA2, and ldtB, major PG synthetic enzymes. We identified distinct factors required to sustain bacterial growth in the absence of each of these enzymes. We find that even the homologs PonA1 and PonA2 have unique sets of genetic interactions, suggesting there are distinct PG synthesis pathways in Mtb. Either PonA1 or PonA2 is required for growth of Mtb, but both genetically interact with LdtB, which has its own distinct genetic network. We further provide evidence that each interaction network is differentially susceptible to antibiotics. Thus, Mtb uses alternative pathways to produce PG, each with its own biochemical characteristics and vulnerabilities.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service