Publication:
Length regulation of multiple flagella that self-assemble from a shared pool of components

No Thumbnail Available

Date

2019-10-09

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

eLife Sciences Publications, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Fai TG, Mohapatra L, Kar P, Kondev J, Amir A. Length regulation of multiple flagella that self-assemble from a shared pool of components. eLife. 2019;8

Research Data

Abstract

<jats:p>The single-celled green algae Chlamydomonas reinhardtii with its two flagella—microtubule-based structures of equal and constant lengths—is the canonical model organism for studying size control of organelles. Experiments have identified motor-driven transport of tubulin to the flagella tips as a key component of their length control. Here we consider a class of models whose key assumption is that proteins responsible for the intraflagellar transport (IFT) of tubulin are present in limiting amounts. We show that the limiting-pool assumption is insufficient to describe the results of severing experiments, in which a flagellum is regenerated after it has been severed. Next, we consider an extension of the limiting-pool model that incorporates proteins that depolymerize microtubules. We show that this ‘active disassembly’ model of flagellar length control explains in quantitative detail the results of severing experiments and use it to make predictions that can be tested in experiments.</jats:p>

Description

Other Available Sources

Keywords

General Biochemistry, Genetics and Molecular Biology, General Immunology and Microbiology, General Neuroscience, General Medicine

Terms of Use

Endorsement

Review

Supplemented By

Referenced By

Related Stories