Publication:
Prediction Focused Topic Models via Feature Selection

No Thumbnail Available

Date

2020-06-17

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ren, Jason J. 2020. Prediction Focused Topic Models via Feature Selection. Bachelor's thesis, Harvard College.

Research Data

Abstract

Supervised topic models are often sought to balance prediction quality and interpretability. However, when models are inevitably misspecified, standard approaches rarely deliver on both. We introduce a novel approach, the prediction-focused topic model, that uses the supervisory signal to retain only vocabulary terms that improve, or at least do not hinder, prediction performance. By removing terms with irrelevant signal, the topic model is able to learn task-relevant, coherent topics. We demonstrate on several data sets that compared to existing approaches, prediction-focused topic models learn much more coherent topics while maintaining competitive predictions.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories