Publication:
Measuring Black Hole Spin Via the X-ray Continuum-fitting Method: Beyond the Thermal Dominant State

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

American Astronomical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Steiner, James F., Jeffrey E. McClintock, Ronald A. Remillard, Ramesh Narayan, and Lijun Gou. 2009. “MEASURING BLACK HOLE SPIN VIA THE X-RAY CONTINUUM-FITTING METHOD: BEYOND THE THERMAL DOMINANT STATE.” The Astrophysical Journal 701 (2): L83–86. https://doi.org/10.1088/0004-637x/701/2/l83.

Research Data

Abstract

All prior work on measuring the spins of stellar-mass black holes (BHs) via the X-ray continuum-fitting (CF) method has relied on the use of weakly Comptonized spectra obtained in the thermal dominant (TD) state. Using a self-consistent Comptonization model, we show that one can analyze spectra that exhibit strong power-law components and obtain values of the inner disk radius, and hence spin, that are consistent with those obtained in the TD state. Specifically, we analyze many RXTE spectra of two BH transients, H1743-322 and XTE J1550-564, and we demonstrate that the radius of the inner edge of the accretion disk remains constant to within a few percent as the strength of the Comptonized component increases by an order of magnitude, i.e., as the fraction of the thermal seed photons that are scattered approaches 25%. We conclude that the CF method can be applied to a much wider body of data than previously thought possible, and to sources that have never been observed to enter the TD state (e.g., Cyg X-1).

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories