Publication: Neural Symbolic Machine Reasoning in the Physical World
No Thumbnail Available
Open/View Files
Date
2021-05-11
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Yi, Kexin. 2021. Neural Symbolic Machine Reasoning in the Physical World. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences.
Research Data
Abstract
The ability to understand physics lies at the core of human intelligence. It has been a long-standing research goal in artificial intelligence to build algorithms able to perceive, explain and predict the physical world. The recent success of deep neural networks has triggered a surge of advancements in models and datasets based on visual observations. However, these efforts mainly focused on recognizing patterns, while physics understanding and reasoning remain underexplored. In this dissertation, I will discuss a series of works on physical reasoning beyond pattern recognition, via a hybrid approach that combines neural networks and symbolic representations. I will first discuss the application of the neural symbolic framework to visual question answering on static images. Then I will present a video dataset that focuses on dynamic and causal reasoning on simple physics experiments that involve classic object collision. A neural symbolic model that tackles these challenging tasks is also introduced. Next I will study dynamics modeling and prediction on more complex physical systems such as rigid bodies and deformable objects. Finally, I will conclude the dissertation by briefly discussing future directions of applying machine intelligence to open scientific questions.
Description
Other Available Sources
Keywords
Physics
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service