Publication:
High-energy asymptotic behavior of the Bourrely-Soffer-Wu model for elastic scattering

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Bourrely, Claude, John M. Myers, Jacques Soffer, and Tai Tsun Wu. 2012. “High-Energy Asymptotic Behavior of the Bourrely-Soffer-Wu Model for Elastic Scattering.” Physical Review D 85 (9). https://doi.org/10.1103/physrevd.85.096009.

Research Data

Abstract

Some time ago, an accurate phenomenological approach, the BSW model, was developed for proton-proton and antiproton-proton elastic scattering cross sections at center-of-mass energies above 10 GeV. This model has been used to give successful theoretical predictions for these processes, at successive collider energies. The BSW model involves a combination of integrals that, while computable numerically at fairly high energies, require some mathematical analysis to reveal the high-energy asymptotic behavior. In this paper we present a high-energy asymptotic representation of the scattering amplitude at moderate momentum transfer, for the leading order in an expansion parameter closely related to the logarithm of the center-of-mass energy. The fact that the expansion parameter goes as the logarithm of the energy means that the asymptotic behavior is accurate only for energies greatly beyond any foreseeable experiment. However, we compare the asymptotic representation against the numerically calculated model for energies in a less extreme region of energy. The asymptotic representation is given by a simple formula which, in particular, exhibits the oscillations of the differential cross section with momentum transfer. We also compare the BSW asymptotic behavior with the Singh-Roy unitarity upper bound for the diffraction peak.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories