Publication: Advanced sulfide solid electrolyte by core-shell structural design
No Thumbnail Available
Open/View Files
Date
2018-10-02
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Wu, Fan, William Fitzhugh, Luhan Ye, Jiaxin Ning and Xin Li. 2018. "Advanced Sulfide Solid Electrolyte by Core-Shell Structural Design." Nature Communications 9: 4037.
Research Data
Abstract
Solid electrolyte is critical to next-generation solid-state lithium-ion batteries with high energy density and improved safety. Sulfide solid electrolytes show some unique properties, such as the high ionic conductivity and low mechanical stiffness. Here we show that the electrochemical stability window of sulfide electrolytes can be improved by controlling synthesis parameters and the consequent core-shell microstructural compositions. This results in a stability window of 0.7–3.1 V and quasi-stability window of up to 5 V for Li-Si-P-S sulfide electrolytes with high Si composition in the shell, a window much larger than the previously predicted one of 1.7–2.1 V. Theoretical and computational work explains this improved voltage window in terms of volume constriction, which resists the decomposition accompanying expansion of the solid electrolyte. It is shown that in the limiting case of a core-shell morphology that imposes a constant volume constraint on the electrolyte, the stability window can be further opened up. Advanced strategies to design the next-generation sulfide solid electrolytes are also discussed based on our understanding.
Description
Other Available Sources
Keywords
General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry