Publication:
Revivals imply quantum many-body scars

No Thumbnail Available

Date

2020-05-05

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Alhambra, Álvaro M., Anurag Anshu, Henrik Wilming. "Revivals imply quantum many-body scars." Phys. Rev. B 101, no. 20 (2020). DOI: 10.1103/physrevb.101.205107

Research Data

Abstract

We derive general results relating revivals in the dynamics of quantum many-body systems to the entanglement properties of energy eigenstates. For a D-dimensional lattice system of N sites initialized in a low-entangled and short-range correlated state, our results show that a perfect revival of the state after a time at most poly(N) implies the existence of "quantum many-body scars", whose number grows at least as the square root of N up to poly-logarithmic factors. These are energy eigenstates with energies placed in an equally-spaced ladder and with Rényi entanglement entropy scaling as log(N) plus an area law term for any region of the lattice. This shows that quantum many-body scars are a necessary condition for revivals, independent of particularities of the Hamiltonian leading to them. We also present results for approximate revivals, for revivals of expectation values of observables and prove that the duration of revivals of states has to become vanishingly short with increasing system size.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories