Publication: Cell-free biosensors for rapid detection of water contaminants
No Thumbnail Available
Open/View Files
Date
2020-07-06
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Jung, Jaeyoung K., Khalid K. Alam, Matthew S. Verosloff, Daiana A. Capdevila, Morgane Desmau, Phillip R. Clauer, Jeong Wook Lee et al. "Cell-free biosensors for rapid detection of water contaminants." Nat Biotechnol 38, no. 12 (2020): 1451-1459. DOI: 10.1038/s41587-020-0571-7
Research Data
Abstract
Access to safe drinking water is a global worldwide, and methods to reliably and easily detect contaminants could be transformative. We report the development of a cell-free in vitro transcription system that uses RNA output sensors activated by ligand induction (ROSALIND) to detect contaminants in water. A combination of highly processive RNA polymerases, allosteric protein transcription factors and synthetic DNA transcription templates regulates the synthesis of a fluorescence-activating RNA aptamer. The presence of a target contaminant induces the transcription of the aptamer, and a fluorescent signal is produced. We apply ROSALIND to detect a range of water contaminants, including antibiotics, small molecules and metals. We also show that adding RNA circuitry can invert responses, reduce crosstalk and improve sensitivity without protein engineering. The ROSALIND system can be freeze-dried for easy storage and distribution, and we apply it in the field to test municipal water supplies, demonstrating its potential utility for monitoring water quality.
Description
Other Available Sources
Keywords
Biomedical Engineering, Molecular Medicine, Applied Microbiology and Biotechnology, Bioengineering, Biotechnology
Terms of Use
Metadata Only