Publication: Movements near the Gate of a Hyperpolarization-activated Cation Channel
No Thumbnail Available
Open/View Files
Date
2003
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Rockefeller University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Rothberg, Brad S., Ki Soon Shin, and Gary Yellen. 2003. “Movements near the Gate of a Hyperpolarization-Activated Cation Channel.” The Journal of General Physiology 122 (5): 501–10. https://doi.org/10.1085/jgp.200308928.
Research Data
Abstract
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Like the related depolarization-activated K+ channels (Kv channels), HCN channels use an intracellular activation gate to regulate access to an inner cavity, lined by the S6 transmembrane regions, which leads to the selectivity filter near the extracellular surface. Here we describe two types of metal interactions with substituted cysteines in the S6, which alter the voltage-controlled movements of the gate. At one position (1,466), substitution of cysteine in all four subunits allows Cd2+ ions at nanomolar concentration to stabilize the open state (a "lock-open" effect). This effect depends on native histidines at a nearby position (H462); the lock-open effect can be abolished by changing the histidines to tyrosines, or enhanced by changing them to cysteines. Unlike a similar effect in Kv channels, this effect depends on a Cd2+ bridge between 462 and 466 in the same subunit. Cysteine substitution at another position (Q468) produces two effects of Cd2+: both a lock-open effect and a dramatic slowing of channel activation-a "lock-closed" effect. The two effects can be separated, because the lock-open effect depends oil the histidine at position 462. The novel lock-closed effect, results from stabilization of the closed state by the binding of tip to four Cd2+ ions. During the opening conformational change, the S6 apparently moves from one position in which the 468C cysteines can bind four Cd2+ ions, possibly as a cluster of cysteines and cadmium ions near the central axis of the pore, to another position (or flexible range of positions) where either 466C or 468C can bind Cd2+ in association with the histidine at 462.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service