Publication:
Constraints on the nature of CID-42: recoil kick or supermassive black hole pair?

No Thumbnail Available

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Blecha, Laura, Francesca Civano, Martin Elvis, and Abraham Loeb. 2012. “Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?” Monthly Notices of the Royal Astronomical Society 428 (2): 1341–50. https://doi.org/10.1093/mnras/sts114.

Research Data

Abstract

The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. As an apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsec-scale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity of greater than or similar to 1300 km s(-1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (v(k) greater than or similar to 2000 km s(-1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially resolved spectra that can pinpoint the origin of the broad-line and narrow-line features will be critical for determining the nature of this unique source.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories