Publication: Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips
No Thumbnail Available
Open/View Files
Date
2020-01-27
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Herland, Anna, Ben M. Maoz, Debarun Das, Mahadevabharath R. Somayaji, Rachelle Prantil-Baun, Richard Novak, Michael Cronce et al. "Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips." Nature Biomedical Engineering 4, no. 4 (2020): 421-436. DOI: 10.1038/s41551-019-0498-9
Research Data
Abstract
Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.
Description
Other Available Sources
Keywords
Computer Science Applications, Biomedical Engineering, Medicine (miscellaneous), Bioengineering, Biotechnology
Terms of Use
Metadata Only