Publication:
A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins

No Thumbnail Available

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Cold Spring Harbor Laboratory Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ringgaard, S., K. Schirner, B. M. Davis, and M. K. Waldor. 2011. “A Family of ParA-like ATPases Promotes Cell Pole Maturation by Facilitating Polar Localization of Chemotaxis Proteins.” Genes & Development 25 (14): 1544–55. https://doi.org/10.1101/gad.2061811.

Research Data

Abstract

Stochastic processes are thought to mediate localization of membrane-associated chemotaxis signaling clusters in peritrichous bacteria. Here, we identified a new family of ParA-like ATPases (designated ParC [for partitioning chemotaxis]) encoded within chemotaxis operons of many polar-flagellated gamma-proteobacteria that actively promote polar localization of chemotaxis proteins. In Vibrio cholerae, a single ParC focus is found at the flagellated old pole in newborn cells, and later bipolar ParC foci develop as the cell matures. The cell cycle-dependent redistribution of ParC occurs by its release from the old pole and subsequent relocalization at the new pole, consistent with a "diffusion and capture'' model for ParC dynamics. Chemotaxis proteins encoded in the same cluster as ParC have a similar unipolar-to-bipolar transition; however, they reach the new pole after the arrival of ParC. Cells lacking ParC exhibit aberrantly localized foci of chemotaxis proteins, reduced chemotaxis, and altered motility, which likely accounts for their enhanced colonization of the proximal small intestine in an animal model of cholera. Collectively, our findings indicate that ParC promotes the efficiency of chemotactic signaling processes. In particular, ParC-facilitated development of a functional chemotaxis apparatus at the new pole readies this site for its development into a functional old pole after cell division.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories