Physics-Based Visual Inference: Theory and Applications

DSpace/Manakin Repository

Physics-Based Visual Inference: Theory and Applications

Citable link to this page

 

 
Title: Physics-Based Visual Inference: Theory and Applications
Author: Xiong, Ying
Citation: Xiong, Ying. 2015. Physics-Based Visual Inference: Theory and Applications. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
Full Text & Related Files:
Abstract: Analyzing images to infer physical scene properties is a fundamental task in computer vision. It is by nature an ill-posed inverse problem, because imaging is a complicated, information-lossy physical and measurement process that cannot be deterministically inverted. This dissertation presents theory and algorithms for handling ambiguities in a variety of low-level vision problems. They are based on two key ideas: (1) explicitly modeling and reporting uncertainties are beneficial to visual inference; and (2) using local models can significantly reduce ambiguities that would exist in pixelwise analysis.

In the first part of the dissertation, we study the color measurement pipeline of consumer digital cameras, and consider the inherent uncertainty of undoing the effects of tone-mapping. We introduce statistical models for this uncertainty and algorithms for fitting it to given cameras or imaging pipelines. Once fit, the model provides for each tone-mapped color a probability distribution over linear scene colors that could have induced it, which is demonstrated to be useful for a number of downstream inference applications.

In the second part of the dissertation, we study the pixelwise ambiguities in physics-based visual inference and present theory and algorithms for employing local models to eliminate or reduce these ambiguities. In shape from shading, we perform mathematical analysis showing that when restricted with quadratic local models, the shape and lighting ambiguities will be reduced to a small finite number of choices as opposed to otherwise continuous manifolds. We propose a framework for surface reconstruction by enforcing consensus on the local regions, which is later enhanced and extended to be applicable to a variety of other visual inference tasks.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845422
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters