Disease Surveillance on Complex Social Networks

DSpace/Manakin Repository

Disease Surveillance on Complex Social Networks

Citable link to this page


Title: Disease Surveillance on Complex Social Networks
Author: Herrera, Jose L.; Srinivasan, Ravi; Brownstein, John S.; Galvani, Alison P.; Meyers, Lauren Ancel

Note: Order does not necessarily reflect citation order of authors.

Citation: Herrera, Jose L., Ravi Srinivasan, John S. Brownstein, Alison P. Galvani, and Lauren Ancel Meyers. 2016. “Disease Surveillance on Complex Social Networks.” PLoS Computational Biology 12 (7): e1004928. doi:10.1371/journal.pcbi.1004928. http://dx.doi.org/10.1371/journal.pcbi.1004928.
Full Text & Related Files:
Abstract: As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.
Published Version: doi:10.1371/journal.pcbi.1004928
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944951/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002416
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search