Publication: Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems
No Thumbnail Available
Date
2016-04-28
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Chowdhury, Debanjan. 2016. Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
Research Data
Abstract
This thesis delves into a study of phases of strongly correlated quantum matter confined to two spatial dimensions. The thesis can broadly be divided into three parts. In the first part, comprising of chapters 2 and 3, we investigate some interesting aspects of symmetry breaking and quantum criticality in the superconducting phase of the iron-based superconductors. In particular, motivated by tunneling microscopy measurements on FeSe, in chapter 2 we study the effect of spontaneously broken rotational symmetry on the structure of the superconducting vortex. In chapter 3, we study the critical singularities associated with the superfluid-density at a wide class of symmetry-breaking and topological phase transitions in a clean superconductor. Inspired by experiments on BaFe$_2$(As$_{1-x}$P$_x$)$_2$, we also analyze the effect of quenched disorder on the superfluid-density in the vicinity of magnetic quantum critical points.
The second part of this thesis, consisting of chapters 4 and 5, is devoted to a study of the pseudogap phase in the underdoped cuprates. In chapter 4 we study the effect of thermal fluctuations of various competing order parameters, including preformed superconductivity and short-ranged charge-density wave, on the electronic excitations. In chapter 5 we analyze the feedback of pairing fluctuations on the landscape of various competing charge-density wave order parameters within the framework of fermi-liquid theory.
In the final part of the thesis, consisting of chapters 6 and 7, we propose an alternative picture for describing the pseudogap metal. In chapter 6, we study a quantum-disordered phase of matter---the fractionalized fermi-liquid (FL*)---where the electrons are coupled to the fractionalized excitations of a strongly fluctuating antiferromagnet and propose it to be a candidate state for the pseudogap. We investigate instabilities of the FL* to density-wave order and compare with experiments. In chapter 7, we describe a framework for describing a novel quantum phase transition without any broken-symmetries---a Higgs transition---that describes a transition from a conventional fermi-liquid to a parent phase of the FL* state via an intermediate non-fermi liquid. We discuss its possible connection to the optimal doping critical point in the cuprates.
Description
Other Available Sources
Keywords
Physics, Condensed Matter
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service