Show simple item record

dc.contributor.authorHau, Lene Vestergaard
dc.contributor.authorHarris, S. E.
dc.contributor.authorDutton, Zachary
dc.contributor.authorBehroozi, Cyrus H.
dc.date.accessioned2010-02-12T16:58:22Z
dc.date.issued1999
dc.identifier.citationHau, Lene Vestergaard, S. E. Harris, Zachary Dutton, and Cyrus H. Behroozi. 1999. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720): 594-598.en_US
dc.identifier.issn0028-0836en_US
dc.identifier.issn1476-4687en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:3636967
dc.description.abstractTechniques that use quantum interference effects are being attively investigated to manipulate the optical properties of quantum systems(1). One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium(2-5). Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling(6-10). The quantum interference controlling the optical properties of the medium is set up by a 'coupling' laser beam propagating at a right angle to the pulsed 'probe' beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose-Einstein condensation(11-13) (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17 m s^(-1)) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18 cm^(2)W^(-1) and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.description.sponsorshipPhysicsen_US
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofdoi:10.1038/17561en_US
dc.relation.hasversionhttp://www.seas.harvard.edu/haulab/publications/pdf/Slow_Light_1999.pdfen_US
dash.licenseMETA_ONLY
dc.titleLight Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gasen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalNatureen_US
dash.depositing.authorHau, Lene Vestergaard
dash.embargo.until10000-01-01
dc.identifier.doi10.1038/17561*
dash.contributor.affiliatedHau, Lene


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record