Person: Panizzolo, Fausto Antonio
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Panizzolo
First Name
Fausto Antonio
Name
Panizzolo, Fausto Antonio
4 results
Search Results
Now showing 1 - 4 of 4
Publication A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking(Springer Nature, 2016) Panizzolo, Fausto Antonio; Galiana, Ignacio; Asbeck, Alan; Siviy, Christopher; Schmidt, Kai; Walsh, ConorBackground: Carrying load alters normal walking, imposes additional stress to the musculoskeletal system, and results in an increase in energy consumption and a consequent earlier onset of fatigue. This phenomenon is largely due to increased work requirements in lower extremity joints, in turn requiring higher muscle activation. The aim of this work was to assess the biomechanical and physiological effects of a multi-joint soft exosuit that applies assistive torques to the biological hip and ankle joints during loaded walking. Methods: The exosuit was evaluated under three conditions: powered (EXO_ON), unpowered (EXO_OFF) and unpowered removing the equivalent mass of the device (EXO_OFF_EMR). Seven participants walked on an instrumented split-belt treadmill and carried a load equivalent to 30% their body mass. We assessed their metabolic cost of walking, kinetics, kinematics, and lower limb muscle activation using a portable gas analysis system, motion capture system, and surface electromyography. Results: Our results showed that the exosuit could deliver controlled forces to a wearer. Net metabolic power in the EXO_ON condition (7.5±0.6 W kg-1) was 7.3±5.0% and 14.2±6.1% lower than in the EXO_OFF_EMR condition (7.9 ±0.8 W kg-1; p = 0.027) and in the EXO_OFF condition (8.5±0.9W kg-1; p = 0.005), respectively. The exosuit also reduced the total joint positive biological work (sum of hip, knee and ankle) when comparing the EXO_ON condition (1.06±0.16 J kg-1) with respect to the EXO_OFF condition (1.28±0.26 J kg-1; p = 0.020) and to the EXO_OFF_EMR condition (1.22±0.21 J kg-1; p = 0.007). Conclusions: The results of the present work demonstrate for the first time that a soft wearable robot can improve walking economy. These findings pave the way for future assistive devices that may enhance or restore gait in other applications.Publication Varying negative work assistance at the ankle with a soft exosuit during loaded walking(BioMed Central, 2017) Malcolm, Philippe; Lee, Sangjun; Crea, Simona; Siviy, Christopher; Saucedo, Fabricio; Galiana, Ignacio; Panizzolo, Fausto Antonio; Holt, Kenneth G.; Walsh, ConorBackground: Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit. Methods: We tested eight participants during walking at 1.5 ms−1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg−1 and a fixed rate of positive work assistance of 0.19 W kg−1. Results: All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment. Conclusions: The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance. Electronic supplementary material The online version of this article (doi:10.1186/s12984-017-0267-5) contains supplementary material, which is available to authorized users.Publication Effect of timing of hip extension assistance during loaded walking with a soft exosuit(BioMed Central, 2016) Ding, Ye; Panizzolo, Fausto Antonio; Siviy, Christopher; Malcolm, Philippe; Galiana, Ignacio; Holt, Kenneth G.; Walsh, ConorBackground: Recent advances in wearable robotic devices have demonstrated the ability to reduce the metabolic cost of walking by assisting the ankle joint. To achieve greater gains in the future it will be important to determine optimal actuation parameters and explore the effect of assisting other joints. The aim of the present work is to investigate how the timing of hip extension assistance affects the positive mechanical power delivered by an exosuit and its effect on biological joint power and metabolic cost during loaded walking. In this study, we evaluated 4 different hip assistive profiles with different actuation timings: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP). Methods: Eight healthy participants walked on a treadmill at a constant speed of 1.5 m · s-1 while carrying a 23 kg backpack load. We tested five different conditions: four with the assistive profiles described above and one unpowered condition where no assistance was provided. We evaluated participants’ lower limb kinetics, kinematics, metabolic cost and muscle activation. Results: The variation of timing in the hip extension assistance resulted in a different amount of mechanical power delivered to the wearer across conditions; with the ESLP condition providing a significantly higher amount of positive mechanical power (0.219 ± 0.006 W · kg-1) with respect to the other powered conditions. Biological joint power was significantly reduced at the hip (ESEP and ESLP) and at the knee (ESEP, ESLP and LSEP) with respect to the unpowered condition. Further, all assistive profiles significantly reduced the metabolic cost of walking compared to the unpowered condition by 5.7 ± 1.5 %, 8.5 ± 0.9 %, 6.3 ± 1.4 % and 7.1 ± 1.9 % (mean ± SE for ESEP, ESLP, LSEP, LSLP, respectively). Conclusions: The highest positive mechanical power delivered by the soft exosuit was reported in the ESLP condition, which showed also a significant reduction in both biological hip and knee joint power. Further, the ESLP condition had the highest average metabolic reduction among the powered conditions. Future work on autonomous hip exoskeletons may incorporate these considerations when designing effective control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12984-016-0196-8) contains supplementary material, which is available to authorized users.Publication Muscle size explains low passive skeletal muscle force in heart failure patients(PeerJ Inc., 2016) Panizzolo, Fausto Antonio; Maiorana, Andrew J.; Naylor, Louise H.; Dembo, Lawrence G.; Lloyd, David G.; Green, Daniel J.; Rubenson, JonasBackground: Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL), both in CHF patients and age- and physical activity-matched control participants. Methods: Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal model. Results: We found reduced passive SOL forces (∼30%) (at the same relative levels of muscle stretch) in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized) and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. Discussion These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening.