Person: Soares, Luis
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Soares
First Name
Luis
Name
Soares, Luis
2 results
Search Results
Now showing 1 - 2 of 2
Publication MMinte: an application for predicting metabolic interactions among the microbial species in a community(BioMed Central, 2016) Mendes-Soares, Helena; Soares, Luis; Mundy, Michael; Chia, NicholasBackground: The explosive growth of microbiome research has yielded great quantities of data. These data provide us with many answers, but raise just as many questions. 16S rDNA—the backbone of microbiome analyses—allows us to assess α-diversity, β-diversity, and microbe-microbe associations, which characterize the overall properties of an ecosystem. However, we are still unable to use 16S rDNA data to directly assess the microbe-microbe and microbe-environment interactions that determine the broader ecology of that system. Thus, properties such as competition, cooperation, and nutrient conditions remain insufficiently analyzed. Here, we apply predictive community metabolic models of microbes identified with 16S rDNA data to probe the ecology of microbial communities. Results: We developed a methodology for the large-scale assessment of microbial metabolic interactions (MMinte) from 16S rDNA data. MMinte assesses the relative growth rates of interacting pairs of organisms within a community metabolic network and whether that interaction has a positive or negative effect. Moreover, MMinte’s simulations take into account the nutritional environment, which plays a strong role in determining the metabolism of individual microbes. We present two case studies that demonstrate the utility of this software. In the first, we show how diet influences the nature of the microbe-microbe interactions. In the second, we use MMinte’s modular feature set to better understand how the growth of Desulfovibrio piger is affected by, and affects the growth of, other members in a simplified gut community under metabolic conditions suggested to be determinant for their dynamics. Conclusion: By applying metabolic models to commonly available sequence data, MMinte grants the user insight into the metabolic relationships between microbes, highlighting important features that may relate to ecological stability, susceptibility, and cross-feeding. These relationships are at the foundation of a wide range of ecological questions that impact our ability to understand problems such as microbially-derived toxicity in colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1230-3) contains supplementary material, which is available to authorized users.Publication Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response(Public Library of Science, 2012) Weiner, Assaf; Chen, Hsiuyi V.; Liu, Chih Long; Rahat, Ayelet; Klien, Avital; Soares, Luis; Gudipati, Mohanram; Pfeffner, Jenna; Regev, Aviv; Buratowski, Stephen; Pleiss, Jeffrey A.; Friedman, Nir; Rando, Oliver J.Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression.