Publication:
Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response

Thumbnail Image

Open/View Files

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Weiner, Assaf, Hsiuyi V. Chen, Chih Long Liu, Ayelet Rahat, Avital Klien, Luis Soares, Mohanram Gudipati, Jenna Pfeffner, Aviv Regev, Stephen Buratowski, Jeffrey A. Pleiss, Nir Friedman, and Oliver J. Rando. 2012. Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biology 10(7): e1001369.

Research Data

Abstract

Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression.

Description

Keywords

Biology, Genetics, Epigenetics, Gene Expression, Genomics, Chromosome Biology, Functional Genomics, Genome Expression Analysis, Systems Biology

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories