Person: Irimia, Daniel
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Irimia
First Name
Daniel
Name
Irimia, Daniel
17 results
Search Results
Now showing 1 - 10 of 17
Publication MICROFLUIDIC PLATFORM FOR THE QUANTITATIVE ANALYSIS OF LEUKOCYTE MIGRATION SIGNATURES(2014) Boneschansker, Leo; Yan, Jun; Wong, Elisabeth; Briscoe, David; Irimia, DanielLeukocyte migration into tissues is characteristic of inflammation. It is usually measured in vitro as the average displacement of populations of cells towards a chemokine gradient, not acknowledging other patterns of cell migration. Here, we designed and validated a microfluidic migration platform to simultaneously analyze four qualitative migration patterns: chemo-attraction, -repulsion, -kinesis and -inhibition, using single-cell quantitative metrics of direction, speed, persistence, and fraction of cells responding. We find that established chemokines C5a and IL-8 induce chemoattraction and repulsion in equal proportions, resulting in the dispersal of cells. These migration signatures are characterized by high persistence and speed and are independent of the chemokine dose or receptor expression. Furthermore, we find that twice as many T-lymphocytes migrate away than towards SDF-1 and their directional migration patterns are not persistent. Overall, our platform characterizes migratory signature responses and uncovers an avenue for precise characterization of leukocyte migration and therapeutic modulators.Publication Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology(Nature Publishing Group, 2015) Cho, Hansang; Seo, Ji Hae; Wong, Keith H.K.; Terasaki, Yasukazu; Park, Joseph; Bong, Kiwan; Arai, Ken; Lo, Eng; Irimia, DanielBlood–brain barrier (BBB) pathology leads to neurovascular disorders and is an important target for therapies. However, the study of BBB pathology is difficult in the absence of models that are simple and relevant. In vivo animal models are highly relevant, however they are hampered by complex, multi-cellular interactions that are difficult to decouple. In vitro models of BBB are simpler, however they have limited functionality and relevance to disease processes. To address these limitations, we developed a 3-dimensional (3D) model of BBB on a microfluidic platform. We verified the tightness of the BBB by showing its ability to reduce the leakage of dyes and to block the transmigration of immune cells towards chemoattractants. Moreover, we verified the localization at endothelial cell boundaries of ZO-1 and VE-Cadherin, two components of tight and adherens junctions. To validate the functionality of the BBB model, we probed its disruption by neuro-inflammation mediators and ischemic conditions and measured the protective function of antioxidant and ROCK-inhibitor treatments. Overall, our 3D BBB model provides a robust platform, adequate for detailed functional studies of BBB and for the screening of BBB-targeting drugs in neurological diseases.Publication Convergent and Divergent Migratory Patterns of Human Neutrophils inside Microfluidic Mazes(Nature Publishing Group UK, 2018) Boneschansker, Leo; Jorgensen, Julianne; Ellett, Felix; Briscoe, David; Irimia, DanielNeutrophils are key cellular components of the innate immune response and characteristically migrate from the blood towards and throughout tissues. Their migratory process is complex, guided by multiple chemoattractants released from injured tissues and microbes. How neutrophils integrate the various signals in the tissue microenvironment and mount effective responses is not fully understood. Here, we employed microfluidic mazes that replicate features of interstitial spaces and chemoattractant gradients within tissues to analyze the migration patterns of human neutrophils. We find that neutrophils respond to LTB4 and fMLF gradients with highly directional migration patterns and converge towards the source of chemoattractant. We named this directed migration pattern convergent. Moreover, neutrophils respond to gradients of C5a and IL-8 with a low-directionality migration pattern and disperse within mazes. We named this alternative migration pattern divergent. Inhibitors of MAP kinase and PI-3 kinase signaling pathways do not alter either convergent or divergent migration patterns, but reduce the number of responding neutrophils. Overlapping gradients of chemoattractants conserve the convergent and divergent migration patterns corresponding to each chemoattractant and have additive effects on the number of neutrophils migrating. These results suggest that convergent and divergent neutrophil migration-patterns are the result of simultaneous activation of multiple signaling pathways.Publication Human Neurospheroid Arrays for In Vitro Studies of Alzheimer’s Disease(Nature Publishing Group UK, 2018) Jorfi, Mehdi; D’Avanzo, Carla; Tanzi, Rudolph; Kim, Doo Yeon; Irimia, DanielNeurospheroids are commonly used for in vitro disease modeling and drug screening. However, the heterogeneity in size of the neurospheroids mixtures available through current methods limits their utility when employed for basic mechanistic studies of neurodegenerative diseases or screening for new interventions. Here, we generate neurospheroids from immortalized neural progenitor cells and human induced pluripotent stem cells that are uniform in size, into large-scale arrays. In proof of concept experiments, we validate the neurospheroids array as a sensitive and robust tool for screening compounds over extended time. We show that when suspended in three-dimensional extracellular matrix up to several weeks, the stem cell-derived neurospheroids display extensive neurite outgrowth and extend thick bundles of dendrites outward. We also cultivate genetically-engineered stem cell-derived neurospheroids with familial Alzheimer’s disease mutations for eight weeks in our microarray system. Interestingly, we observed robust accumulation of amyloid-β and phosphorylated tau, key hallmarks of Alzheimer’s disease. Overall, our in vitro model for engineering neurospheroid arrays is a valuable tool for studying complex neurodegenerative diseases and accelerating drug discovery.Publication Spontaneous Neutrophil Migration Patterns during Sepsis after Major Burns(Public Library of Science, 2014) Jones, Caroline N.; Moore, Molly; Dimisko, Laurie; Alexander, Andrew; Ibrahim, Amir; Hassell, Bryan A.; Warren, H.; Tompkins, Ronald; Fagan, Shawn P.; Irimia, DanielFinely tuned to respond quickly to infections, neutrophils have amazing abilities to migrate fast and efficiently towards sites of infection and inflammation. Although neutrophils ability to migrate is perturbed in patients after major burns, no correlations have yet been demonstrated between altered migration and higher rate of infections and sepsis in these patients when compared to healthy individuals. To probe if such correlations exist, we designed microfluidic devices to quantify the neutrophil migration phenotype with high precision. Inside these devices, moving neutrophils are confined in channels smaller than the neutrophils and forced to make directional decisions at bifurcations and around posts. We employed these devices to quantify neutrophil migration across 18 independent parameters in 74 blood samples from 13 patients with major burns and 3 healthy subjects. Blinded, retrospective analysis of clinical data and neutrophil migration parameters revealed that neutrophils isolated from blood samples collected during sepsis migrate spontaneously inside the microfluidic channels. The spontaneous neutrophil migration is a unique phenotype, typical for patients with major burns during sepsis and often observed one or two days before the diagnosis of sepsis is confirmed. The spontaneous neutrophil migration phenotype is rare in patients with major burns in the absence of sepsis, and is not encountered in healthy individuals. Our findings warrant further studies of neutrophils and their utility for early diagnosing and monitoring sepsis in patients after major burns.Publication A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells(Public Library of Science, 2016) Skoge, Monica; Wong, Elisabeth; Hamza, Bashar; Bae, Albert; Martel, Joseph; Kataria, Rama; Keizer-Gunnink, Ineke; Kortholt, Arjan; Van Haastert, Peter J. M.; Charras, Guillaume; Janetopoulos, Christopher; Irimia, DanielChemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events.Publication Controlled induction of distributed microdeformation in wounded tissue via a microchamber array dressing(Wiley-Blackwell, 2010) Kane, Bartholomew J.; Younan, George; Helm, Douglas; Dastouri, Pouya; Prentice-Mott, Harrison; Irimia, Daniel; Chan, Rodney K.; Toner, Mehmet; Orgill, DennisMechanical stimuli are known to play an important role in determining the structure and function of living cells and tissues. Recent studies have highlighted the role of mechanical signals in mammalian dermal wound healing. However, the biological link between mechanical stimulation of wounded tissue and the subsequent cellular response has not been fully determined. The capacity for researchers to study this link is partially limited by the lack of instrumentation capable of applying controlled mechanical stimuli to wounded tissue. The studies outlined here tested the hypothesis that it was possible to control the magnitude of induced wound tissue deformation using a microfabricated dressing composed of an array of open-faced, hexagonally shaped microchambers rendered in a patch of silicone rubber. By connecting the dressing to a single vacuum source, the underlying wounded tissue was drawn up into each of the microchambers, thereby inducing tissue deformation. For these studies, the dressings were applied to full-thickness murine dermal wounds with 200 mmHg vacuum for 12 h. These studies demonstrated that the dressing was capable of inducing wound tissue deformation with values ranging from 11 to 29%. Through statistical analysis, the magnitude of the induced deformation was shown to be a function of both microchamber height and width. These results demonstrated that the dressing was capable of controlling the amount of deformation imparted in the underlying tissue. By allowing the application of mechanical stimulation with varying intensities, such a dressing will enable the performance of sophisticated mechanobiology studies in dermal wound healing.Publication Collective and Individual Migration following the Epithelial-Mesenchymal Transition(2014) Wong, Ian Y.; Javaid, Sarah; Wong, Elisabeth A.; Perk, Sinem; Haber, Daniel; Toner, Mehmet; Irimia, DanielDuring cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to solidification phase transitions in binary mixtures, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion.Publication The Role of Physical Stabilization in Whole Blood Preservation(Nature Publishing Group, 2016) Wong, Keith H. K.; Sandlin, Rebecca; Carey, Thomas R.; Miller, Kathleen L.; Shank, Aaron T.; Oklu, Rahmi; Maheswaran, Shyamala; Haber, Daniel; Irimia, Daniel; Stott, Shannon; Toner, MehmetThe rapid degradation of blood ex vivo imposes logistical limitations on the utilization of blood-borne cells in medical diagnostics and scientific investigations. A fundamental but overlooked aspect in the storage of this fluid tissue is blood settling, which induces physical stress and compaction, aggregates blood cells, and causes collateral damage due to leukocyte activation. Here we show that the polymer Ficoll 70 kDa stabilized blood samples and prevented blood settling over the course of 72 hours, primarily by inhibiting depletion-mediated red blood cell aggregation. Physical stabilization decreased echinocyte formation, improved leukocyte viability, and inhibited the release of neutrophil elastase—a marker of neutrophil extracellular trap formation. In addition, Ficoll-stabilized blood was compatible with common leukocyte enrichment techniques including red blood cell lysis and immunomagnetic purification. This study showed for the first time that blood settling can be prevented using polymers and has implications in diagnostics.Publication Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis(2016) Norling, Lucy V.; Headland, Sarah E.; Dalli, Jesmond; Arnardottir, Hildur H.; Haworth, Oliver; Jones, Hefin R.; Irimia, Daniel; Serhan, Charles; Perretti, MauroRheumatoid arthritis (RA) is a debilitating disease characterized by persistent accumulation of leukocytes within the articular cavity and synovial tissue. Metabololipidomic profiling of arthritic joints from omega-3 supplemented mice identified elevated levels of specialized proresolving lipid mediators (SPM) including resolvin D1 (RvD1). Profiling of human RA synovial fluid revealed physiological levels of RvD1, which — once applied to human neutrophils — attenuated chemotaxis. These results prompted analyses of the antiarthritic properties of RvD1 in a model of murine inflammatory arthritis. The stable epimer 17R-RvD1 (100 ng/day) significantly attenuated arthritis severity, cachexia, hind-paw edema, and paw leukocyte infiltration and shortened the remission interval. Metabololipidomic profiling in arthritic joints revealed 17R-RvD1 significantly reduced PGE2 biosynthesis, while increasing levels of protective SPM. Molecular analyses indicated that 17R-RvD1 enhanced expression of genes associated with cartilage matrix synthesis, and direct intraarticular treatment induced chondroprotection. Joint protective actions of 17R-RvD1 were abolished in RvD1 receptor–deficient mice termed ALX/fpr2/3−/−. These investigations open new therapeutic avenues for inflammatory joint diseases, providing mechanistic substance for the benefits of omega-3 supplementation in RA.