Publication: Porous microwells for geometry-selective, large-scale microparticle arrays
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Kim, Jae Jung, Ki Wan Bong, Eduardo Reátegui, Daniel Irimia, and Patrick S. Doyle. 2016. “Porous microwells for geometry-selective, large-scale microparticle arrays.” Nature materials 16 (1): 139-146. doi:10.1038/nmat4747. http://dx.doi.org/10.1038/nmat4747.
Research Data
Abstract
Large-scale microparticle arrays (LSMA) are key for material science and bioengineering applications. However, previous approaches suffer from tradeoffs between scalability, precision, specificity, and versatility. Here, we present a porous microwell-based approach to create large-scale microparticle arrays with complex motifs. Microparticles are guided to and pushed into microwells by fluid flow through small open pores at the bottom of the porous well arrays. A scaling theory allows for the rational design of LSMAs to sort and array particles based on their size, shape or modulus. Sequential particle assembly allows for proximal and nested particle arrangements, as well as particle recollection and pattern transfer. We demonstrate the capabilities of the approach by means of three applications: high-throughput single-cell arrays; microenvironment fabrication for neutrophil chemotaxis; and complex, covert tags by the transfer of an upconversion nanocrystal laden LSMA.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service