Person: Chen, Xingang
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chen
First Name
Xingang
Name
Chen, Xingang
3 results
Search Results
Now showing 1 - 3 of 3
Publication The future of primordial features with large-scale structure surveys(IOP Publishing, 2016) Chen, Xingang; Dvorkin, Cora; Huang, Zhiqi; Namjoo, Mohammad Hossein; Verde, LiciaPrimordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.Publication The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background(2009) Dodelson, S.; Easther, R.; Hanany, S.; McAllister, L.; Meyer, S.; Page, L.; Ade, P.; Amblard, A.; Ashoorioon, A.; Balbi, C.; Bartlett, J.; Bartolo, N.; Baumann, D.; Beltran, M.; Benford, D.; Birkinshaw, M.; Bock, J.; Bond, D.; Borrill, J.; Bouchet, F.; Bridges, M.; Bunn, E.; Calabrese, E.; Cantalupo, C.; Caramete, A.; Carbone, C.; Carroll, S.; Chatterjee, S.; Chen, Xingang; Church, S.; Chuss, D.; Contaldi, C.; Cooray, A.; Creminelli, P.; Das, S.; De Bernardis, F.; Delabrouille, J.; Desert, F.; Devlin, M.; Dickinson, C.; Dicker, S.; DiPirro, M.; Dobbs, M.; Dore, O.; Dotson, J.; Dunkley, J.; Dvorkin, Cora; Eriksen, H.; Falvella, M.; Finley, D.; Finkbeiner, Douglas; Fixsen, D.; Flauger, R.; Fossalba, P.; Fowler, J.; Galli, S.; Gates, E.; Gear, W.; Giraud-Heraud, Y.; Krzysztof, G.; Greene, B.; Gruppuso, A.; Gundersen, J.; Halpern, M.; Hamilton, J.; Hazumi, M.; Hernandez-Monteagudo, C.; Hertzberg, M.; Hinshaw, G.; Hirata, C.; Hivon, E.; Holman, R.; Holmes, W.; Hu, W.; Hubmayr, J.; Huffenberger, K.; Hui, H.; Hui, L.; Irwin, K.; Jackson, M.; Jaffe, A.; Johnson, B.; Johnson, D.; Jones, W.; Kachru, S.; Kadota, K.; Kaplan, J.; Kaplinghat, W.; Keating, B.; Keskitalo, R.; Khoury, J.; Kinney, W.; Kisner, T.; Knox, T.; Kodama, H.; Kogut, A.; Komatsu, E.; Kosowsky, A.; Kovac, John; Krauss, L.; Kurki-Suonio, H.; Lamarre, J.; Landau, S.; Lawrenece, C.; Leach, S.; Leblond, L.; Lee, A.; Leitch, E.; Leonardi, R.; Lesgourgues, J.; Liddle, A.; Lim, E.; Limon, M.; LoVerde, M.; Lubin, P.; Lunghi, E.; Lykken, J.; MacTavish, C.; Magalhaes, A.; Maino, D.; Martin, V.; Matarrese, S.; Mather, J.; Mathur, H.; Matsumura, T.; Meerburg, P.; Melchiorri, A.; Mersini-Houghton, L.; Miller, A.; Milligan, M.; Moodley, K.; Neimack, M.; Nguyen, H.; Nicolis, A.; O'Dwyer, I.; Olinto, A.; Pagano, L.; Paher, E.; Partridge, B.; Pearson, T.; Peiris, H.; Peloso, M.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pierpaoli, E.; Pietrobon, D.; Pisano, G.; Pogosian, L.; Pogosyan, D.; Ponthieu, N.; Popa, L.; Pryke, C; Raeth, C.; Ray, S.; Reichardt, C.; Riccardi, S.; Richards, P.; Riotto, A.; Rocha, G.; Ruhl, J.; Rusholme, B.; Scherrer, R.; Scoccola, C.; Scott, D.; Sealfon, C.; Sefusatti, E.; Sehgal, N.; Seiffert, M.; Senatore, L.; Serra, P.; Shandera, S.; Shimon, M.; Shirron, P.; Sievers, J.; Silk, J.; Sigurdson, K.; Silverberg, R.; Silverstein, E.; Staggs, S.; Starkman, G.; Stebbins, A.; Stivoli, F.; Stompor, R.; Sugiyama, N.; Swetz, D.; Tegmark, M.; Tartari, A.; Timbie, P.; Titov, M.; Tristram, M.; Trodden, M.; Tucker, G.; Urrestilla, J.; Veneziani, M.; Verde, L.; Vieira, J.; Walker, T.; Wands, D.; Watson, S.; Weinberg, S.; Weiss, R.; Wandelt, B.; Winstein, B.; Wollack, E.; Wyman, M.; Yadav, A.; Won Yoon, K.; Zahn, O.; Zaldarriaga, M.; Zemcov, M.; Zwart, J.Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habitat. The age-old questions have been transformed into two pressing issues primed for attack in the coming decade: • How did the Universe begin? The current cosmological paradigm successfully explains how the majestic structure observed in the Universe today grew out of small ripples in the density of matter. What is the physical origin of the primordial seeds which are ultimately responsible for the existence of galaxies, stars, planets, and people in the Universe? It is natural to expect (and many theories predict) that whatever produced the density ripples also produced gravity waves – undulations in the fabric of space-time which travel at the speed of light. Does the Universe contain a spectrum of primordial gravity waves produced by the same mechanism which produced the ripples in the density? • What physical laws govern the Universe at the highest energies? All explanations for the seeds of structure rely on physics at energies far beyond those probed by, e.g., CERN’s Large Hadron Collider. Experiments probing these seeds therefore may provide information about new particles, forces, or perhaps even extra dimensions of space that are visible only at the highest energies. The clearest window onto these questions is the pattern of polarization in the Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial gravity waves. A detection of the special pattern produced by gravity waves would be not only an unprecedented discovery, but also a direct probe of physics at the earliest observable instants of our Universe. Experiments which map CMB polarization over the coming decade will lead us on our first steps towards answering these age-old questions.Publication CMBPol Mission Concept Study: Probing Inflation with CMB Polarization(2009) Baumann, Daniel; Jackson, Mark; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel; Colombo, Loris; Cooray, Asantha; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William; Komatsu, Eiichiro; Krauss, Lawrence; Lesgourgues, Julien; Liddle, Andrew; Liguori, Michele; Lim, Eugene; Linde, Andrei; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah; Silverstein, EvaWe summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.