Person:
Swoboda, Kathryn

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Swoboda

First Name

Kathryn

Name

Swoboda, Kathryn

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    De novo ATP1A3 and compound heterozygous NLRP3 mutations in a child with autism spectrum disorder, episodic fatigue and somnolence, and muckle-wells syndrome
    (Elsevier, 2018) Torres, Alcy; Brownstein, Catherine; Tembulkar, Sahil K.; Graber, Kelsey; Genetti, Casie; Kleiman, Robin J.; Sweadner, Kathleen; Mavros, Chrystal; Liu, Kevin X.; Smedemark-Margulies, Niklas; Maski, Kiran; Yang, Edward; Agrawal, Pankaj; Shi, Jiahai; Beggs, Alan; D'Angelo, Eugene; Lincoln, Sarah Hope; Carroll, Devon; Dedeoglu, Fatma; Gahl, William A.; Biggs, Catherine M.; Swoboda, Kathryn; Berry, Gerard; Gonzalez-Heydrich, Joseph
    Complex phenotypes may represent novel syndromes that are the composite interaction of several genetic and environmental factors. We describe an 9-year old male with high functioning autism spectrum disorder and Muckle-Wells syndrome who at age 5 years of age manifested perseverations that interfered with his functioning at home and at school. After age 6, he developed intermittent episodes of fatigue and somnolence lasting from hours to weeks that evolved over the course of months to more chronic hypersomnia. Whole exome sequencing showed three mutations in genes potentially involved in his clinical phenotype. The patient has a predicted pathogenic de novo heterozygous p.Ala681Thr mutation in the ATP1A3 gene (chr19:42480621C>T, GRCh37/hg19). Mutations in this gene are known to cause Alternating Hemiplegia of Childhood, Rapid Onset Dystonia Parkinsonism, and CAPOS syndrome, sometimes accompanied by autistic features. The patient also has compound heterozygosity for p.Arg490Lys/p.Val200Met mutations in the NLRP3 gene (chr1:247588214G>A and chr1:247587343G>A, respectively). NLRP3 mutations are associated in an autosomal dominant manner with clinically overlapping auto-inflammatory conditions including Muckle-Wells syndrome. The p.Arg490Lys is a known pathogenic mutation inherited from the patient's father. The p.Val200Met mutation, inherited from his mother, is a variant of unknown significance (VUS). Whether the de novoATP1A3mutation is responsible for or plays a role in the patient's episodes of fatigue and somnolence remains to be determined. The unprecedented combination of two NLRP3 mutations may be responsible for other aspects of his complex phenotype.
  • Thumbnail Image
    Publication
    Emerging therapies and challenges in spinal muscular atrophy
    (John Wiley and Sons Inc., 2017) Farrar, Michelle A.; Park, Susanna B.; Vucic, Steve; Carey, Kate A.; Turner, Bradley J.; Gillingwater, Thomas H.; Swoboda, Kathryn; Kiernan, Matthew C.
    Spinal muscular atrophy (SMA) is a hereditary neurodegenerative disease with severity ranging from progressive infantile paralysis and premature death (type I) to limited motor neuron loss and normal life expectancy (type IV). Without disease‐modifying therapies, the impact is profound for patients and their families. Improved understanding of the molecular basis of SMA, disease pathogenesis, natural history, and recognition of the impact of standardized care on outcomes has yielded progress toward the development of novel therapeutic strategies and are summarized. Therapeutic strategies in the pipeline are appraised, ranging from SMN1 gene replacement to modulation of SMN2 encoded transcripts, to neuroprotection, to an expanding repertoire of peripheral targets, including muscle. With the advent of preliminary trial data, it can be reasonably anticipated that the SMA treatment landscape will transform significantly. Advancement in presymptomatic diagnosis and screening programs will be critical, with pilot newborn screening studies underway to facilitate preclinical diagnosis. The development of disease‐modifying therapies will necessitate monitoring programs to determine the long‐term impact, careful evaluation of combined treatments, and further acceleration of improvements in supportive care. In advance of upcoming clinical trial results, we consider the challenges and controversies related to the implementation of novel therapies for all patients and set the scene as the field prepares to enter an era of novel therapies. Ann Neurol 2017;81:355–368
  • Thumbnail Image
    Publication
    Research conference summary from the 2014 International Task Force on ATP1A3-Related Disorders
    (Wolters Kluwer, 2017) Rosewich, Hendrik; Sweney, Matthew T.; DeBrosse, Suzanne; Ess, Kevin; Ozelius, Laurie; Andermann, Eva; Andermann, Frederick; Andrasco, Gene; Belgrade, Alice; Brashear, Allison; Ciccodicola, Sharon; Egan, Lynn; George, Alfred L.; Lewelt, Aga; Magelby, Joshua; Merida, Mario; Newcomb, Tara; Platt, Vicky; Poncelin, Dominic; Reyna, Sandra; Sasaki, Masayuki; Sotero de Menezes, Marcio; Sweadner, Kathleen; Viollet, Louis; Zupanc, Mary; Silver, Kenneth; Swoboda, Kathryn
    Objective: ATP1A3-related neurologic disorders encompass a broad range of phenotypes that extend well beyond initial phenotypic criteria associated with alternating hemiplegia of childhood (AHC) and rapid-onset dystonia parkinsonism. Methods: In 2014, the Alternating Hemiplegia of Childhood Foundation hosted a multidisciplinary workshop intended to address fundamental challenges surrounding the diagnosis and management of individuals with ATP1A3-related disorders. Results: Workshop attendees were charged with the following: (1) to achieve consensus on expanded diagnostic criteria to facilitate the identification of additional patients, intended to supplement existing syndrome-specific diagnostic paradigms; (2) to standardize definitions for the broad range of paroxysmal manifestations associated with AHC to disseminate to families; (3) to create clinical recommendations for common recurrent issues facing families and medical care providers; (4) to review data related to the death of individuals in the Alternating Hemiplegia of Childhood Foundation database to guide future efforts in identifying at-risk subjects and potential preventative measures; and (5) to identify critical gaps where we most need to focus national and international research efforts. Conclusions: This report summarizes recommendations of the workshop committee, highlighting the key phenotypic features to facilitate the diagnosis of possible ATP1A3 mutations, providing recommendations for genetic testing, and outlining initial acute management for common recurrent clinical conditions, including epilepsy.
  • Thumbnail Image
    Publication
    Developing multidisciplinary clinics for neuromuscular care and research
    (John Wiley and Sons Inc., 2017) Paganoni, Sabrina; Nicholson, Katie; Leigh, Fawn; Swoboda, Kathryn; Chad, David; Drake, Kristin; Haley, Kellen; Cudkowicz, Merit; Berry, James
    ABSTRACT Multidisciplinary care is considered the standard of care for both adult and pediatric neuromuscular disorders and has been associated with improved quality of life, resource utilization, and health outcomes. Multidisciplinary care is delivered in multidisciplinary clinics that coordinate care across multiple specialties by reducing travel burden and streamlining care. In addition, the multidisciplinary care setting facilitates the integration of clinical research, patient advocacy, and care innovation (e.g., telehealth). Yet, multidisciplinary care requires substantial commitment of staff time and resources. We calculated personnel costs in our ALS clinic in 2015 and found an average cost per patient visit of $580, of which only 45% was covered by insurance reimbursement. In this review, we will describe classic and emerging concepts in multidisciplinary care models for adult and pediatric neuromuscular disease. We will then explore the financial impact of multidisciplinary care with emphasis on sustainability and metrics to demonstrate quality and value. Muscle Nerve 56: 848–858, 2017