Person: Jakobs, Tatjana
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Jakobs
First Name
Tatjana
Name
Jakobs, Tatjana
6 results
Search Results
Now showing 1 - 6 of 6
Publication The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve(Public Library of Science, 2013) Qu, Juan; Jakobs, TatjanaReactive gliosis is a complex process that involves changes in gene expression and morphological remodeling. The mouse optic nerve, where astrocytes, microglia and oligodendrocytes interact with retinal ganglion cell axons and each other, is a particularly suitable model for studying the molecular mechanisms of reactive gliosis. We triggered gliosis at the mouse optic nerve head by retro orbital nerve crush. We followed the expression profiles of 14,000 genes from 1 day to 3 months, as the optic nerve formed a glial scar. The transcriptome showed profound changes. These were greatest shortly after injury; the numbers of differentially regulated genes then dropped, returning nearly to resting levels by 3 months. Different genes were modulated with very different time courses, and functionally distinct groups of genes responded in partially overlapping waves. These correspond roughly to two quick waves of inflammation and cell proliferation, a slow wave of tissue remodeling and debris removal, and a final stationary phase that primarily reflects permanent structural changes in the axons. Responses from astrocytes, microglia and oligodendrocytes were distinctively different, both molecularly and morphologically. Comparisons to other models of brain injury and to glaucoma indicated that the glial responses depended on both the tissue and the injury. Attempts to modulate glial function after axonal injuries should consider different mechanistic targets at different times following the insult.Publication Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma(Public Library of Science, 2015) Berry, Ryan H.; Qu, Juan; John, Simon W. M.; Howell, Gareth R.; Jakobs, TatjanaIt has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.Publication Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries(The Rockefeller University Press, 2017) Sun, Daniel; Moore, Sara; Jakobs, TatjanaReactive remodeling of optic nerve head astrocytes is consistently observed in glaucoma and other optic nerve injuries. However, it is unknown whether this reactivity is beneficial or harmful for visual function. In this study, we used the Cre recombinase (Cre)–loxP system under regulation of the mouse glial fibrillary acidic protein promoter to knock out the transcription factor signal transducer and activator of transcription 3 (STAT3) from astrocytes and test the effect this has on reactive remodeling, ganglion cell survival, and visual function after experimental glaucoma and nerve crush. After injury, STAT3 knockout mice displayed attenuated astrocyte hypertrophy and reactive remodeling; astrocytes largely maintained their honeycomb organization and glial tubes. These changes were associated with increased loss of ganglion cells and visual function over a 30-day period. Thus, reactive astrocytes play a protective role, preserving visual function. STAT3 signaling is an important mediator of various aspects of the reactive phenotype within optic nerve astrocytes.Publication Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype(The Association for Research in Vision and Ophthalmology, 2017) Wang, Rui; Seifert, Philip; Jakobs, TatjanaPurpose Optic nerve head astrocytes, a subtype of white-matter astrocytes, become reactive early in the course of glaucoma. It was shown recently that in the DBA/2J mouse model of inherited glaucoma optic nerve astrocytes extend new longitudinal processes into the axon bundles before ganglion cell loss becomes apparent. The present study aims at testing whether this behavior of astrocytes is typical of early glaucomatous damage. Methods: Mice expressing green fluorescent protein in individual astrocytes were used to evaluate the early response of astrocytes in the glial lamina of the optic nerve head after increasing the IOP using the microbead occlusion method. Tissue sections from the glial lamina were imaged consecutively by confocal and electron microscopy. Results: Confocal and electron microscope images show that astrocytes close to the myelination transition zone in the hypertensive nerve heads extend new processes that follow the longitudinal axis of the optic nerve and invade axon bundles in the nerve head. Ultrastructurally, the longitudinal processes were largely devoid of subcellular organelles except for degenerating mitochondria. Conclusions: The longitudinal processes are a common feature of glaucomatous optic nerve astrocytes, whereas they are not observed after traumatic nerve injury. Thus, astrocytes appear to fine-tune their responses to the nature and/or timing of the injury to the neurons that they surround.Publication Astrocytes in the optic nerve head express putative mechanosensitive channels(Molecular Vision, 2015) Choi, Hee Joo; Sun, Daniel; Jakobs, TatjanaPurpose To establish whether optic nerve head astrocytes express candidate molecules to sense tissue stretch. Methods: We used conventional PCR, quantitative PCR, and single-cell reverse transcription PCR (RT–PCR) to assess the expression of various members of the transient receptor potential (TRP) channel family and of the recently characterized mechanosensitive channels Piezo1 and 2 in optic nerve head tissue and in single, isolated astrocytes. Results: Most TRP subfamilies (TRPC, TRPM, TRPV, TRPA, and TRPP) and Piezo1 and 2 were expressed in the optic nerve head of the mouse. Quantitative real-time PCR analysis showed that TRPC1, TRPM7, TRPV2, TRPP2, and Piezo1 are the dominant isoforms in each subfamily. Single-cell RT–PCR revealed that many TRP isoforms, TRPC1–2, TRPC6, TRPV2, TRPV4, TRPM2, TRPM4, TRPM6–7, TRPP1–2, and Piezo1–2, are expressed in astrocytes of the optic nerve head, and that most astrocytes express TRPC1 and TRPP1–2. Comparisons of the TRPP and Piezo expression levels between different tissue regions showed that Piezo2 expression was higher in the optic nerve head and the optic nerve proper than in the brain and the corpus callosum. TRPP2 also showed higher expression in the optic nerve head. Conclusions: Astrocytes in the optic nerve head express multiple putative mechanosensitive channels, in particular the recently identified channels Piezo1 and 2. The expression of putative mechanosensitive channels in these cells may contribute to their responsiveness to traumatic or glaucomatous injury.Publication Organotypic Culture of Physiologically Functional Adult Mammalian Retinas(Public Library of Science, 2007) Koizumi, Amane; Zeck, Günther; Ben, Yixin; Masland, Richard; Jakobs, TatjanaBackground: The adult mammalian retina is an important model in research on the central nervous system. Many experiments require the combined use of genetic manipulation, imaging, and electrophysiological recording, which make it desirable to use an in vitro preparation. Unfortunately, the tissue culture of the adult mammalian retina is difficult, mainly because of the high energy consumption of photoreceptors. Methods and Findings: We describe an interphase culture system for adult mammalian retina that allows for the expression of genes delivered to retinal neurons by particle-mediated transfer. The retinas retain their morphology and function for up to six days— long enough for the expression of many genes of interest—so that effects upon responses to light and receptive fields could be measured by patch recording or multielectrode array recording. We show that a variety of genes encoding pre- and post-synaptic marker proteins are localized correctly in ganglion and amacrine cells. Conclusions: In this system the effects on neuronal function of one or several introduced exogenous genes can be studied within intact neural circuitry of adult mammalian retina. This system is flexible enough to be compatible with genetic manipulation, imaging, cell transfection, pharmacological assay, and electrophysiological recordings.