Publication: The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve
Open/View Files
Date
2013
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Qu, Juan, and Tatjana C. Jakobs. 2013. “The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve.” PLoS ONE 8 (6): e67094. doi:10.1371/journal.pone.0067094. http://dx.doi.org/10.1371/journal.pone.0067094.
Research Data
Abstract
Reactive gliosis is a complex process that involves changes in gene expression and morphological remodeling. The mouse optic nerve, where astrocytes, microglia and oligodendrocytes interact with retinal ganglion cell axons and each other, is a particularly suitable model for studying the molecular mechanisms of reactive gliosis. We triggered gliosis at the mouse optic nerve head by retro orbital nerve crush. We followed the expression profiles of 14,000 genes from 1 day to 3 months, as the optic nerve formed a glial scar. The transcriptome showed profound changes. These were greatest shortly after injury; the numbers of differentially regulated genes then dropped, returning nearly to resting levels by 3 months. Different genes were modulated with very different time courses, and functionally distinct groups of genes responded in partially overlapping waves. These correspond roughly to two quick waves of inflammation and cell proliferation, a slow wave of tissue remodeling and debris removal, and a final stationary phase that primarily reflects permanent structural changes in the axons. Responses from astrocytes, microglia and oligodendrocytes were distinctively different, both molecularly and morphologically. Comparisons to other models of brain injury and to glaucoma indicated that the glial responses depended on both the tissue and the injury. Attempts to modulate glial function after axonal injuries should consider different mechanistic targets at different times following the insult.
Description
Other Available Sources
Keywords
Biology, Anatomy and Physiology, Ocular System, Ocular Anatomy, Computational Biology, Genomics, Genome Analysis Tools, Transcriptomes, Neuroscience, Sensory Systems, Visual System, Neurobiology of Disease and Regeneration, Medicine, Ophthalmology, Glaucoma
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service