Person: Doda Khera, Ruhani
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Doda Khera
First Name
Ruhani
Name
Doda Khera, Ruhani
Search Results
Now showing 1 - 1 of 1
Publication Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction(Springer Science and Business Media LLC, 2019-06) Shan, Hongming; Padole, Atul; Homayounieh, Fatemeh; Kruger, Uwe; Doda Khera, Ruhani; Nitiwarangkul, Chayanin; K. Kalra, Mannudeep; Wang, GECommercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms.