Person:
Thompson, Jonathan

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Thompson

First Name

Jonathan

Name

Thompson, Jonathan

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Forest loss in New England: A projection of recent trends
    (Public Library of Science, 2017) Thompson, Jonathan; Plisinski, Joshua; Olofsson, Pontus; Holden, Christopher E.; Duveneck, Matthew J.
    New England has lost more than 350,000 ha of forest cover since 1985, marking a reversal of a two-hundred-year trend of forest expansion. We a cellular land-cover change model to project a continuation of recent trends (1990–2010) in forest loss across six New England states from 2010 to 2060. Recent trends were estimated using a continuous change detection algorithm applied to twenty years of Landsat images. We addressed three questions: (1) What would be the consequences of a continuation of the recent trends in terms of changes to New England's forest cover mosaic? (2) What social and biophysical attributes are most strongly associated with recent trends in forest loss, and how do these vary geographically? (3) How sensitive are projections of forest loss to the reference period—i.e. how do projections based on the period spanning 1990-to-2000 differ from 2000-to-2010, or from the full period, 1990-to-2010? Over the full reference period, 8201 ha yr-1 and 468 ha yr-1 of forest were lost to low- and high-density development, respectively. Forest loss was concentrated in suburban areas, particularly near Boston. Of the variables considered, 'distance to developed land' was the strongest predictor of forest loss. The next most important predictor varied geographically: 'distance to roads' ranked second in the more developed regions in the south and 'population density' ranked second in the less developed north. The importance and geographical variation in predictor variables were relatively stable between reference periods. In contrast, there was 55% more forest loss during the 1990-to-2000 reference period compared to the 2000-to-2010 period, highlighting the importance of understanding the variation in reference periods when projecting land cover change. The projection of recent trends is an important baseline scenario with implications for the management of forest ecosystems and the services they provide.
  • Thumbnail Image
    Publication
    The influence of land use and climate change on forest biomass and composition in Massachusetts, USA
    (Wiley-Blackwell, 2011) Thompson, Jonathan; Foster, David; Scheller, Robert; Kittredge, David
    Land use and climate change have complex and interacting effects on naturally dynamic forest landscapes. To anticipate and adapt to these changes, it is necessary to understand their individual and aggregate impacts on forest growth and composition. We conducted a simulation experiment to evaluate regional forest change in Massachusetts, USA over the next 50 years (2010–2060). Our objective was to estimate, assuming a linear continuation of recent trends, the relative and interactive influence of continued growth and succession, climate change, forest conversion to developed uses, and timber harvest on live aboveground biomass (AGB) and tree species composition. We examined 20 years of land use records in relation to social and biophysical explanatory variables and used regression trees to create ‘‘probability-of-conversion’’ and ‘‘probability-of-harvest’’ zones. We incorporated this information into a spatially interactive forest landscape simulator to examine forest dynamics as they were affected by land use and climate change. We conducted simulations in a fullfactorial design and found that continued forest growth and succession had the largest effect on AGB, increasing stores from 181.83 Tg to 309.56 Tg over 50 years. The increase varied from 49% to 112% depending on the ecoregion within the state. Compared to simulations with no climate or land use, forest conversion reduced gains in AGB by 23.18 Tg (or 18%) over 50 years. Timber harvests reduced gains in AGB by 5.23 Tg (4%). Climate change (temperature and precipitation) increased gains in AGB by 17.3 Tg (13.5%). Pinus strobus and Acer rubrum were ranked first and second, respectively, in terms of total AGB throughout all simulations. Climate change reinforced the dominance of those two species. Timber harvest reduced Quercus rubra from 10.8% to 9.4% of total AGB, but otherwise had little effect on composition. Forest conversion was generally indiscriminate in terms of species removal. Under the naı¨ve assumption that future land use patterns will resemble the recent past, we conclude that continued forest growth and recovery will be the dominant mechanism driving forest dynamics over the next 50 years, and that while climate change may enhance growth rates, this will be more than offset by land use, primarily forest conversion to developed uses.
  • Thumbnail Image
    Publication
    A foundation tree at the precipice: Tsuga canadensis health after the arrival of Adelges tsugae in central New England
    (Wiley-Blackwell, 2012) Orwig, David; Thompson, Jonathan; Povak, Nicholas; Manner, Megan; Niebyl, Donald; Foster, David
    Hemlock (Tsuga canadensis) plays a unique role in Eastern forests, producing distinctive biogeochemical, habitat, and microclimatic conditions and yet has begun a potentially irreversible decline due to the invasive hemlock woolly adelgid (Adelges tsugae; HWA) that causes foliar damage, crown loss, and mortality of host trees. Understanding the regional, landscape, site, and stand factors influencing HWA spread and impact is critical for predicting future landscape dynamics and directing effective management. Using aerial photographs, we documented hemlock distribution throughout central Massachusetts and subsampled 123 stands to examine the spatial pattern of HWA and its impact on tree vigor and mortality since its arrival in 1989. In the study region, over 86,000 ha of hemlock forest were mapped in 5,127 stands. White pine (Pinus strobus), red oak (Quercus rubra), red maple (Acer rubrum), and black birch (Betula lenta) were common overstory associates. Hemlock abundance increased from south to north, commonly on western and northwestern slopes. Average stand size was 55 ha, overstory basal area ranged from 23 to 55 m2 ha1 and overstory stem densities averaged 993 ha1. By 2004, 40% of sampled stands were infested, but most stands remained in good health overall; only 8 stands contained high HWA densities and only two had lost .50% overstory hemlock. Out of fifteen stand and landscape predictor variables examined, only latitude and winter climate variables were related to HWA density. Cold temperatures appear to be slowing the spread and impact of HWA at its northern extent as HWA infestation intensity and hemlock mortality and vigor were significantly correlated with average minimum winter temperature. Contrary to predictions, there was no regional increase in hemlock harvesting. The results suggest that regional HWA-hemlock dynamics are currently being shaped more by climate than by a combination of landscape and social factors. The persistence and migration of HWA continues to pose a significant threat regionally, especially in the northern portion of the study area, where hemlock dominates many forests.
  • Thumbnail Image
    Publication
    Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
    (Nature Publishing Group UK, 2018) Serra-Diaz, Josep M.; Maxwell, Charles; Lucash, Melissa S.; Scheller, Robert M.; Laflower, Danelle; Miller, Adam D.; Tepley, Alan J.; Epstein, Howard E.; Anderson-Teixeira, Kristina J.; Thompson, Jonathan
    The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change could disrupt the mechanisms promoting forest stability (e.g. growth, regeneration and fire tolerance). Using a landscape simulation model, we estimate that about one-third of the Klamath forest landscape (500,000 ha) could transition from conifer-dominated forest to shrub/hardwood chaparral, triggered by increased fire activity coupled with lower post-fire conifer establishment. Such shifts were widespread under the warmer climate change scenarios (RCP 8.5) but were surprisingly prevalent under the climate of 1949–2010, reflecting the joint influences of recent warming trends and the legacy of fire suppression that may have enhanced conifer dominance. Our results demonstrate that major forest ecosystem shifts should be expected when climate change disrupts key stabilizing feedbacks that maintain the dominance of long-lived, slowly regenerating trees.