Person:
Buratowski, Stephen

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Buratowski

First Name

Stephen

Name

Buratowski, Stephen

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Modulation of mRNA and lncRNA expression dynamics by the Set2–Rpd3S pathway
    (Nature Publishing Group, 2016) Kim, Ji Hyun; Lee, Bo Bae; Oh, Young Mi; Zhu, Chenchen; Steinmetz, Lars M.; Lee, Yookyeong; Kim, Wan Kyu; Lee, Sung Bae; Buratowski, Stephen; Kim, TaeSoo
    H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed regions of mRNA genes, repressing internal cryptic promoters and slowing elongation. Here we explore the function of this pathway by analysing transcription in yeast undergoing a series of carbon source shifts. Approximately 80 mRNA genes show increased induction upon SET2 deletion. A majority of these promoters have overlapping lncRNA transcription that targets H3K36me3 and deacetylation by Rpd3S to the mRNA promoter. We previously reported a similar mechanism for H3K4me2-mediated repression via recruitment of the Set3C histone deacetylase. Here we show that the distance between an mRNA and overlapping lncRNA promoter determines whether Set2–Rpd3S or Set3C represses. This analysis also reveals many previously unreported cryptic ncRNAs induced by specific carbon sources, showing that cryptic promoters can be environmentally regulated. Therefore, in addition to repression of cryptic transcription and modulation of elongation, H3K36 methylation maintains optimal expression dynamics of many mRNAs and ncRNAs.
  • Thumbnail Image
    Publication
    Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response
    (Public Library of Science, 2012) Weiner, Assaf; Chen, Hsiuyi V.; Liu, Chih Long; Rahat, Ayelet; Klien, Avital; Soares, Luis; Gudipati, Mohanram; Pfeffner, Jenna; Regev, Aviv; Buratowski, Stephen; Pleiss, Jeffrey A.; Friedman, Nir; Rando, Oliver J.
    Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression.
  • Thumbnail Image
    Publication
    Co-transcriptional histone methylations
    (BioMed Central, 2013) Buratowski, Stephen
  • Thumbnail Image
    Publication
    Ctk1 Promotes Dissociation of Basal Transcription Factors from Elongating RNA Polymerase II
    (Nature Publishing Group, 2009) Ahn, Seong Hoon; Keogh, Michael-Christopher; Buratowski, Stephen
    As RNA polymerase II (RNApII) transitions from initiation to elongation, Mediator and the basal transcription factors TFIID, TFIIA, TFIIH, and TFIIE remain at the promoter as part of a scaffold complex, whereas TFIIB and TFIIF dissociate. The yeast Ctk1 kinase associates with elongation complexes and phosphorylates serine 2 in the YSPTSPS repeats of the Rpb1 C-terminal domain, a modification that couples transcription to mRNA 3′-end processing. The higher eukaryotic kinase Cdk9 not only performs a similar function, but also functions at the 5′-end of genes in the transition from initiation to elongation. In strains lacking Ctk1, many basal transcription factors cross-link throughout transcribed regions, apparently remaining associated with RNApII until it terminates. Consistent with this observation, preinitiation complexes formed on immobilized templates with transcription extracts lacking Ctk1 leave lower levels of the scaffold complex behind after escape. Taken together, these results suggest that Ctk1 is necessary for the release of RNApII from basal transcription factors. Interestingly, this function of Ctk1 is independent of its kinase activity, suggesting a structural function of the protein.
  • Thumbnail Image
    Publication
    Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae
    (Public Library of Science, 2005) Liu, Chih Long; Kaplan, Tommy; Kim, Minkyu; Friedman, Nir; Rando, Oliver J; Buratowski, Stephen; Schreiber, Stuart
    Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose occurrence does not correlate with transcription levels. The other group consists of modifications occurring in gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish nucleosomes at one location (e.g., promoter nucleosomes) from those at another location (e.g., over the 3′ ends of coding regions). These results are consistent with the idea of a simple, redundant histone code, in which multiple modifications share the same role.
  • Thumbnail Image
    Publication
    Efficient termination of nuclear lncRNA transcription promotes mitochondrial genome maintenance
    (eLife Sciences Publications, Ltd, 2018) du Mee, Dorine Jeanne Mariëtte; Ivanov, Maxim; Parker, Joseph Paul; Buratowski, Stephen; Marquardt, Sebastian
    Most DNA in the genomes of higher organisms does not code for proteins. RNA Polymerase II (Pol II) transcribes non-coding DNA into long non-coding RNAs (lncRNAs), but biological roles of lncRNA are unclear. We find that mutations in the yeast lncRNA CUT60 result in poor growth. Defective termination of CUT60 transcription causes read-through transcription across the ATP16 gene promoter. Read-through transcription localizes chromatin signatures associated with Pol II elongation to the ATP16 promoter. The act of Pol II elongation across this promoter represses functional ATP16 expression by a Transcriptional Interference (TI) mechanism. Atp16p function in the mitochondrial ATP-synthase complex promotes mitochondrial DNA stability. ATP16 repression by TI through inefficient termination of CUT60 therefore triggers mitochondrial genome loss. Our results expand the functional and mechanistic implications of non-coding DNA in eukaryotes by highlighting termination of nuclear lncRNA transcription as mechanism to stabilize an organellar genome.
  • Thumbnail Image
    Publication
    Cell-Cycle Modulation of Transcription Termination Factor Sen1
    (Cell Press, 2018) Mischo, Hannah E.; Chun, Yujin; Harlen, Kevin M.; Smalec, Brendan; Dhir, Somdutta; Churchman, L. Stirling; Buratowski, Stephen
    Summary Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions.