Person: Chan, Christopher
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chan
First Name
Christopher
Name
Chan, Christopher
2 results
Search Results
Now showing 1 - 2 of 2
Publication Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease(Springer Science and Business Media LLC, 2021-07-14) McAlpine, Cameron; Park, Joseph; Griciuc, Ana; Kim, Eunhee; Choi, Se Hoon; Iwamoto, Yoshiko; Kiss, Máté G.; Christie, Kathleen; Vinegoni, Claudio; Poller, Wolfram; Mindur, John; Chan, Christopher; He, Shun; Janssen, Henrike; Wong, Lai Ping; Downey, Jeffrey; Singh, Sumnima; Anzai, Atsushi; Kahles, Florian; Jorfi, Mehdi; Feruglio, Paulo; Sadreyev, Ruslan; Weissleder, Ralph; Kleinstiver, Benjamin; Nahrendorf, Matthias; Tanzi, Rudolph; Swirski, FilipCommunication within the glial cell ecosystem is essential to neuronal and brain health1–3. The influence of glial cells on β-amyloid (Aβ) and neurofibrillary tau accumulation and clearance in Alzheimer’s disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) reprograms microglia to ameliorate AD pathology. Upon recognition of Aβ deposits, microglia augment IL-3Rɑ, IL-3’s specific receptor, rendering them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional reprograming of microglia endowing them with an acute immune response program, enhanced motility, and the capacity to cluster and clear Aβ and tau aggregates. These changes restrict AD pathology and cognitive decline. This study identifies IL-3 as a critical mediator of astrocyte-microglia crosstalk and a node for therapeutic intervention in AD.Publication The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes(The Rockefeller University Press, 2017) Anzai, Atsushi; Choi, Jennifer; He, Shun; Fenn, Ashley M.; Nairz, Manfred; Rattik, Sara; McAlpine, Cameron; Mindur, John; Chan, Christopher; Iwamoto, Yoshiko; Tricot, Benoit; Wojtkiewicz, Gregory R.; Weissleder, Ralph; Libby, Peter; Nahrendorf, Matthias; Stone, James; Becher, Burkhard; Swirski, FilipMyocardial infarction (MI) elicits massive inflammatory leukocyte recruitment to the heart. Here, we hypothesized that excessive leukocyte invasion leads to heart failure and death during acute myocardial ischemia. We found that shortly and transiently after onset of ischemia, human and mouse cardiac fibroblasts produce granulocyte/macrophage colony-stimulating factor (GM-CSF) that acts locally and distally to generate and recruit inflammatory and proteolytic cells. In the heart, fibroblast-derived GM-CSF alerts its neighboring myeloid cells to attract neutrophils and monocytes. The growth factor also reaches the bone marrow, where it stimulates a distinct myeloid-biased progenitor subset. Consequently, hearts of mice deficient in either GM-CSF or its receptor recruit fewer leukocytes and function relatively well, whereas mice producing GM-CSF can succumb from left ventricular rupture, a complication mitigated by anti–GM-CSF therapy. These results identify GM-CSF as both a key contributor to the pathogenesis of MI and a potential therapeutic target, bolstering the idea that GM-CSF is a major orchestrator of the leukocyte supply chain during inflammation.