Person: Gold, Diane
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gold
First Name
Diane
Name
Gold, Diane
42 results
Search Results
Now showing 1 - 10 of 42
Publication Prenatal and Childhood Traffic-Related Pollution Exposure and Childhood Cognition in the Project Viva Cohort (Massachusetts, USA)(NLM-Export, 2015) Harris, Maria H.; Gold, Diane; Rifas-Shiman, Sheryl; Melly, Steven J.; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Koutrakis, Petros; Bellinger, David; White, Roberta F.; Sagiv, Sharon K.; Oken, EmilyBackground: Influences of prenatal and early-life exposures to air pollution on cognition are not well understood. Objectives: We examined associations of gestational and childhood exposure to traffic-related pollution with childhood cognition. Methods: We studied 1,109 mother–child pairs in Project Viva, a prospective birth cohort study in eastern Massachusetts (USA). In mid-childhood (mean age, 8.0 years), we measured verbal and nonverbal intelligence, visual motor abilities, and visual memory. For periods in late pregnancy and childhood, we estimated spatially and temporally resolved black carbon (BC) and fine particulate matter (PM2.5) exposures, residential proximity to major roadways, and near-residence traffic density. We used linear regression models to examine associations of exposures with cognitive assessment scores, adjusted for potential confounders. Results: Compared with children living ≥ 200 m from a major roadway at birth, those living < 50 m away had lower nonverbal IQ [–7.5 points; 95% confidence interval (CI): –13.1, –1.9], and somewhat lower verbal IQ (–3.8 points; 95% CI: –8.2, 0.6) and visual motor abilities (–5.3 points; 95% CI: –11.0, 0.4). Cross-sectional associations of major roadway proximity and cognition at mid-childhood were weaker. Prenatal and childhood exposure to traffic density and PM2.5 did not appear to be associated with poorer cognitive performance. Third-trimester and childhood BC exposures were associated with lower verbal IQ in minimally adjusted models; but after adjustment for socioeconomic covariates, associations were attenuated or reversed. Conclusions: Residential proximity to major roadways during gestation and early life may affect cognitive development. Influences of pollutants and socioeconomic conditions on cognition may be difficult to disentangle. Citation Harris MH, Gold DR, Rifas-Shiman SL, Melly SJ, Zanobetti A, Coull BA, Schwartz JD, Gryparis A, Kloog I, Koutrakis P, Bellinger DC, White RF, Sagiv SK, Oken E. 2015. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the Project Viva cohort (Massachusetts, USA). Environ Health Perspect 123:1072–1078; http://dx.doi.org/10.1289/ehp.1408803Publication Epigenome-wide association study of total serum immunoglobulin E in children: a life course approach(BioMed Central, 2018) Peng, Cheng; Cardenas, Andres; Rifas-Shiman, Sheryl; Hivert, Marie-France; Gold, Diane; Platts-Mills, Thomas A.; Lin, Xihong; Oken, Emily; Baccarelli, Andrea A.; Litonjua, Augusto A.; Demeo, DawnBackground: IgE-mediated sensitization may be epigenetically programmed in utero, but early childhood environment may further alter complex traits and disease phenotypes through epigenetic plasticity. However, the epigenomic footprint underpinning IgE-mediated type-I hypersensitivity has not been well-understood, especially under a longitudinal early-childhood life-course framework. Methods: We used epigenome-wide DNA methylation (IlluminaHumanMethylation450 BeadChip) in cord blood and mid-childhood peripheral blood to investigate pre- and post-natal methylation marks associated with mid-childhood (age 6.7–10.2) total serum IgE levels in 217 mother-child pairs in Project Viva—a prospective longitudinal pre-birth cohort in eastern Massachusetts, USA. We identified methylation sites associated with IgE using covariate-adjusted robust linear regressions. Results: Nineteen methylation marks in cord blood were associated with IgE in mid-childhood (FDR < 0.05) in genes implicated in cell signaling, growth, and development. Among these, two methylation sites (C7orf50, ZAR1) remained robust after the adjustment for the change in DNA methylation from birth to mid-childhood (FDR < 0.05). An analysis of the change in methylation between cord blood and mid-childhood DNA (Δ-DNAm) identified 395 methylation marks in 272 genes associated with mid-childhood IgE (FDR < 0.05), with multiple sites located within ACOT7 (4 sites), EPX (5 sites), EVL (3 sites), KSR1 (4 sites), ZFPM1 (3 sites), and ZNF862 (3 sites). Several of these methylation loci were previously associated with asthma (ADAM19, EPX, IL4, IL5RA, and PRG2). Conclusion: This study identified fetally programmed and mid-childhood methylation signals associated with mid-childhood IgE. Epigenetic priming during fetal development and early childhood likely plays an important role in IgE-mediated type-I hypersensitivity. Electronic supplementary material The online version of this article (10.1186/s13148-018-0488-x) contains supplementary material, which is available to authorized users.Publication A new model of wheezing severity in young children using the validated ISAAC wheezing module: A latent variable approach with validation in independent cohorts(Public Library of Science, 2018) Brunwasser, Steven M.; Gebretsadik, Tebeb; Gold, Diane; Turi, Kedir N.; Stone, Cosby A.; Datta, Soma; Gern, James E.; Hartert, Tina V.Background: The International Study of Asthma and Allergies in Children (ISAAC) Wheezing Module is commonly used to characterize pediatric asthma in epidemiological studies, including nearly all airway cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) consortium. However, there is no consensus model for operationalizing wheezing severity with this instrument in explanatory research studies. Severity is typically measured using coarsely-defined categorical variables, reducing power and potentially underestimating etiological associations. More precise measurement approaches could improve testing of etiological theories of wheezing illness. Methods: We evaluated a continuous latent variable model of pediatric wheezing severity based on four ISAAC Wheezing Module items. Analyses included subgroups of children from three independent cohorts whose parents reported past wheezing: infants ages 0–2 in the INSPIRE birth cohort study (Cohort 1; n = 657), 6-7-year-old North American children from Phase One of the ISAAC study (Cohort 2; n = 2,765), and 5-6-year-old children in the EHAAS birth cohort study (Cohort 3; n = 102). Models were estimated using structural equation modeling. Results: In all cohorts, covariance patterns implied by the latent variable model were consistent with the observed data, as indicated by non-significant χ2 goodness of fit tests (no evidence of model misspecification). Cohort 1 analyses showed that the latent factor structure was stable across time points and child sexes. In both cohorts 1 and 3, the latent wheezing severity variable was prospectively associated with wheeze-related clinical outcomes, including physician asthma diagnosis, acute corticosteroid use, and wheeze-related outpatient medical visits when adjusting for confounders Conclusion: We developed an easily applicable continuous latent variable model of pediatric wheezing severity based on items from the well-validated ISAAC Wheezing Module. This model prospectively associates with asthma morbidity, as demonstrated in two ECHO birth cohort studies, and provides a more statistically powerful method of testing etiologic hypotheses of childhood wheezing illness and asthma.Publication Cumulative exposure to environmental pollutants during early pregnancy and reduced fetal growth: the Project Viva cohort(BioMed Central, 2018) Rokoff, Lisa B.; Rifas-Shiman, Sheryl; Coull, Brent; Cardenas, Andres; Calafat, Antonia M.; Ye, Xiaoyun; Gryparis, Alexandros; Schwartz, Joel; Sagiv, Sharon K.; Gold, Diane; Oken, Emily; Fleisch, Abby F.Background: Reduced fetal growth is associated with perinatal and later morbidity. Prenatal exposure to environmental pollutants is linked to reduced fetal growth at birth, but the impact of concomitant exposure to multiple pollutants is unclear. The purpose of this study was to examine interactions between early pregnancy exposure to cigarette smoke, traffic pollution, and select perfluoroalkyl substances (PFASs) on birth weight-for-gestational age (BW/GA). Methods: Among 1597 Project Viva mother-infant pairs, we assessed maternal cigarette smoking by questionnaire, traffic pollution at residential address by black carbon land use regression model, and plasma concentration of select PFASs in early pregnancy. We calculated sex-specific BW/GA z-scores, an index of fetal growth, from national reference data. We fit covariate-adjusted multi-pollutant linear regression models and examined interactions between exposures, using a likelihood-ratio test to identify a best-fit model. Results: Two hundred six (13%) mothers smoked during pregnancy. Mean [standard deviation (SD)] for black carbon was 0.8 (0.3) μg/m3, perfluorooctane sulfonate (PFOS) was 29.1 (16.5) ng/mL, and BW/GA z-score was 0.19 (0.96). In the best-fit model, BW/GA z-score was lower in infants of mothers exposed to greater black carbon [− 0.08 (95% CI: -0.15, − 0.01) per interquartile range (IQR)]. BW/GA z-score (95% CI) was also lower in infants of mothers who smoked [− 0.09 (− 0.23, 0.06)] or were exposed to greater PFOS [− 0.03 (− 0.07, 0.02) per IQR], although confidence intervals crossed the null. There were no interactions between exposures. In secondary analyses, instead of PFOS, we examined perfluorononanoate (PFNA) [mean (SD): 0.7 (0.4) ng/mL], a PFAS more closely linked to lower BW/GA in our cohort. The best-fit multi-pollutant model included positive two-way interactions between PFNA and both black carbon and smoking (p-interactions = 0.03). Conclusions: Concurrent prenatal exposures to maternal smoking, black carbon, and PFOS are additively associated with lower fetal growth, whereas PFNA may attenuate associations of smoking and black carbon with lower fetal growth. It is important to examine interactions between multiple exposures in relation to health outcomes, as effects may not always be additive and may shed light on biological pathways. Electronic supplementary material The online version of this article (10.1186/s12940-018-0363-4) contains supplementary material, which is available to authorized users.Publication Short-Term Changes in Ambient Temperature and Risk of Ischemic Stroke(S. Karger AG, 2014) Mostofsky, Elizabeth; Wilker, Elissa; Schwartz, Joel; Zanobetti, Antonella; Gold, Diane; Wellenius, Gregory A.; Mittleman, MurrayBackground: Despite consistent evidence of a higher short-term risk of cardiovascular mortality associated with ambient temperature, there have been discrepant findings on the association between temperature and ischemic stroke. Moreover, few studies have considered potential confounding by ambient fine particulate matter air pollution <2.5 μm in diameter (PM2.5) and none have examined the impact of temperature changes on stroke in the subsequent hours rather than days. The aim of this study was to evaluate whether changes in temperature trigger an ischemic stroke in the following hours and days and whether humid days are particularly harmful. Methods: We reviewed the medical records of 1,705 patients residing in the metropolitan region of Boston, Mass., USA, who were hospitalized with neurologist-confirmed ischemic stroke, and we abstracted data on the time of symptom onset and clinical characteristics. We obtained hourly meteorological data from the National Weather Service station and hourly PM2.5 data from the Harvard ambient monitoring station. We used the time-stratified case-crossover design to assess the association between ischemic stroke and apparent temperature averaged over 1-7 days prior to stroke onset adjusting for PM2.5. We assessed whether differences in apparent temperature trigger a stroke within shorter time periods by examining the association between stroke onset and apparent temperature levels averaged in 2-hour increments prior to stroke onset (0-2 h through 36-38 h). We tested whether the association varied by health characteristics or by PM2.5, ozone or relative humidity. Results: The incidence rate ratio of ischemic stroke was 1.09 (95% confidence interval 1.01-1.18) following a 5°C decrement in average apparent temperature over the 2 days preceding symptom onset. The higher risk associated with cooler temperatures peaked in the first 14-34 h. There was no statistically significant difference in the association between temperature and ischemic stroke across seasons. The risk of ischemic stroke was not meaningfully different across subgroups of patients defined by health characteristics. The association between ischemic stroke and ambient temperature was stronger on days with higher levels of relative humidity. Conclusions: Lower temperatures are associated with a higher risk of ischemic stroke onset in both warm and cool seasons, and the risk is higher on days with higher levels of relative humidity. Based on this study and the body of literature on ambient temperature and cardiovascular events, identifying methods for mitigating cardiovascular risk may be warranted.Publication DNA Hypomethylation, Ambient Particulate Matter, and Increased Blood Pressure: Findings From Controlled Human Exposure Experiments(Blackwell Publishing Ltd, 2013) Bellavia, Andrea; Urch, Bruce; Speck, Mary; Brook, Robert D.; Scott, Jeremy A.; Albetti, Benedetta; Behbod, Behrooz; North, Michelle; Valeri, Linda; Bertazzi, Pier Alberto; Silverman, Frances; Gold, Diane; A. Baccarelli, AndreaBackground: Short‐term exposures to fine (<2.5 μm aerodynamic diameter) ambient particulate‐matter (PM) have been related with increased blood pressure (BP) in controlled‐human exposure and community‐based studies. However, whether coarse (2.5 to 10 μm) PM exposure increases BP is uncertain. Recent observational studies have linked PM exposures with blood DNA hypomethylation, an epigenetic alteration that activates inflammatory and vascular responses. No experimental evidence is available to confirm those observational data and demonstrate the relations between PM, hypomethylation, and BP. Methods and Results: We conducted a cross‐over trial of controlled‐human exposure to concentrated ambient particles (CAPs). Fifteen healthy adult participants were exposed for 130 minutes to fine CAPs, coarse CAPs, or HEPA‐filtered medical air (control) in randomized order with ≥2‐week washout. Repetitive‐element (Alu, long interspersed nuclear element‐1 [LINE‐1]) and candidate‐gene (TLR4, IL‐12, IL‐6, iNOS) blood methylation, systolic and diastolic BP were measured pre‐ and postexposure. After adjustment for multiple comparisons, fine CAPs exposure lowered Alu methylation (β‐standardized=−0.74, adjusted‐P=0.03); coarse CAPs exposure lowered TLR4 methylation (β‐standardized=−0.27, adjusted‐P=0.04). Both fine and coarse CAPs determined significantly increased systolic BP (β=2.53 mm Hg, P=0.001; β=1.56 mm Hg, P=0.03, respectively) and nonsignificantly increased diastolic BP (β=0.98 mm Hg, P=0.12; β=0.82 mm Hg, P=0.11, respectively). Decreased Alu and TLR4 methylation was associated with higher postexposure DBP (β‐standardized=0.41, P=0.04; and β‐standardized=0.84, P=0.02; respectively). Decreased TLR4 methylation was associated with higher postexposure SBP (β‐standardized=1.45, P=0.01). Conclusions: Our findings provide novel evidence of effects of coarse PM on BP and confirm effects of fine PM. Our results provide the first experimental evidence of PM‐induced DNA hypomethylation and its correlation to BP.Publication Air Pollution Exposure and Abnormal Glucose Tolerance during Pregnancy: The Project Viva Cohort(National Institute of Environmental Health Sciences, 2014) Fleisch, Abby F.; Gold, Diane; Rifas-Shiman, Sheryl; Koutrakis, Petros; Schwartz, Joel; Kloog, Itai; Melly, Steven; Coull, Brent A.; Zanobetti, Antonella; Gillman, Matthew; Oken, EmilyBackground: Exposure to fine particulate matter (PM with diameter ≤ 2.5 μm; PM2.5) has been linked to type 2 diabetes mellitus, but associations with hyperglycemia in pregnancy have not been well studied. Methods: We studied Boston, Massachusetts–area pregnant women without known diabetes. We identified impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) during pregnancy from clinical glucose tolerance tests at median 28.1 weeks gestation. We used residential addresses to estimate second-trimester PM2.5 and black carbon exposure via a central monitoring site and spatiotemporal models. We estimated residential traffic density and roadway proximity as surrogates for exposure to traffic-related air pollution. We performed multinomial logistic regression analyses adjusted for sociodemographic covariates, and used multiple imputation to account for missing data. Results: Of 2,093 women, 65 (3%) had IGT and 118 (6%) had GDM. Second-trimester spatiotemporal exposures ranged from 8.5 to 15.9 μg/m3 for PM2.5 and from 0.1 to 1.7 μg/m3 for black carbon. Traffic density was 0–30,860 vehicles/day × length of road (kilometers) within 100 m; 281 (13%) women lived ≤ 200 m from a major road. The prevalence of IGT was elevated in the highest (vs. lowest) quartile of exposure to spatiotemporal PM2.5 [odds ratio (OR) = 2.63; 95% CI: 1.15, 6.01] and traffic density (OR = 2.66; 95% CI: 1.24, 5.71). IGT also was positively associated with other exposure measures, although associations were not statistically significant. No pollutant exposures were positively associated with GDM. Conclusions: Greater exposure to PM2.5 and other traffic-related pollutants during pregnancy was associated with IGT but not GDM. Air pollution may contribute to abnormal glycemia in pregnancy. Citation: Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, Coull BA, Zanobetti A, Gillman MW, Oken E. 2014. Air pollution exposure and abnormal glucose tolerance during pregnancy: the Project Viva Cohort. Environ Health Perspect 122:378–383; http://dx.doi.org/10.1289/ehp.1307065Publication Brachial Artery Responses to Ambient Pollution, Temperature, and Humidity in People with Type 2 Diabetes: A Repeated-Measures Study(National Institute of Environmental Health Sciences, 2014) Zanobetti, Antonella; Luttmann-Gibson, Heike; Horton, Edward S.; Cohen, Allison; Coull, Brent; Hoffmann, Barbara; Schwartz, Joel; Mittleman, Murray; Li, Yongsheng; Stone, Peter; de Souza, Celine; Lamparello, Brooke; Koutrakis, Petros; Gold, DianeBackground: Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. Objectives: In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). Methods: Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. Results: Baseline BAD was negatively associated with particle pollution, including home/trip–integrated BC (–0.02 mm; 95% CI: –0.04, –0.003, for a 0.28 μg/m3 increase in BC), OC (–0.08 mm; 95% CI: –0.14, –0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. Conclusion: Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. Citation: Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, Hoffmann B, Schwartz JD, Mittleman MA, Li Y, Stone PH, de Souza C, Lamparello B, Koutrakis P, Gold DR. 2014. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. Environ Health Perspect 122:242–248; http://dx.doi.org/10.1289/ehp.1206136Publication Effects of Ambient Coarse, Fine, and Ultrafine Particles and Their Biological Constituents on Systemic Biomarkers: A Controlled Human Exposure Study(NLM-Export, 2015) Liu, Ling; Urch, Bruce; Poon, Raymond; Szyszkowicz, Mieczyslaw; Speck, Mary; Gold, Diane; Wheeler, Amanda J.; Scott, James A.; Brook, Jeffrey R.; Thorne, Peter S.; Silverman, Frances S.Background: Ambient coarse, fine, and ultrafine particles have been associated with mortality and morbidity. Few studies have compared how various particle size fractions affect systemic biomarkers. Objectives: We examined changes of blood and urinary biomarkers following exposures to three particle sizes. Methods: Fifty healthy nonsmoking volunteers, mean age of 28 years, were exposed to coarse (2.5–10 μm; mean, 213 μg/m3) and fine (0.15–2.5 μm; mean, 238 μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (< 0.3 μm; mean, 136 μg/m3) and filtered medical air. Exposures lasted 130 min, separated by ≥ 2 weeks. Blood/urine samples were collected preexposure and 1 hr and 21 hr postexposure to determine blood interleukin-6 and C-reactive protein (inflammation), endothelin-1 and vascular endothelial growth factor (VEGF; vascular mediators), and malondialdehyde (lipid peroxidation); as well as urinary VEGF, 8-hydroxy-deoxy-guanosine (DNA oxidation), and malondialdehyde. Mixed-model regressions assessed pre- and postexposure differences. Results: One hour postexposure, for every 100-μg/m3 increase, coarse CAP was associated with increased blood VEGF (2.41 pg/mL; 95% CI: 0.41, 4.40) in models adjusted for O3, fine CAP with increased urinary malondialdehyde in single- (0.31 nmol/mg creatinine; 95% CI: 0.02, 0.60) and two-pollutant models, and ultrafine CAP with increased urinary 8-hydroxydeoxyguanosine in single- (0.69 ng/mg creatinine; 95% CI: 0.09, 1.29) and two-pollutant models, lasting < 21 hr. Endotoxin was significantly associated with biomarker changes similar to those found with CAPs. Conclusions: Ambient particles with various sizes/constituents may influence systemic biomarkers differently. Endotoxin in ambient particles may contribute to vascular mediator changes and oxidative stress. Citation Liu L, Urch B, Poon R, Szyszkowicz M, Speck M, Gold DR, Wheeler AJ, Scott JA, Brook JR, Thorne PS, Silverman FS. 2015. Effects of ambient coarse, fine, and ultrafine particles and their biological constituents on systemic biomarkers: a controlled human exposure study. Environ Health Perspect 123:534–540; http://dx.doi.org/10.1289/ehp.1408387Publication Diagnostic accuracy of the bronchodilator response in children(Elsevier BV, 2013) Tse, Szewah; Gold, Diane; Sordillo, Joanne; Hoffman, Elaine Borland; Gillman, Matthew; Rifas-Shiman, Sheryl; Fuhlbrigge, Anne; Tantisira, Kelan; Weiss, Scott; Litonjua, Augusto A.Background: The bronchodilator response (BDR) reflects the reversibility of airflow obstruction and is recommended as an adjunctive test to diagnose asthma. The validity of the commonly used definition of BDR, a 12% or greater change in FEV1 from baseline, has been questioned in childhood. Objectives: We sought to examine the diagnostic accuracy of the BDR test by using 3 large pediatric cohorts. Methods: Cases include 1041 children with mild-to-moderate asthma from the Childhood Asthma Management Program. Control subjects (nonasthmatic and nonwheezing) were chosen from Project Viva and Home Allergens, 2 population-based pediatric cohorts. Receiver operating characteristic curves were constructed, and areas under the curve were calculated for different BDR cutoffs. Results: A total of 1041 cases (59.7% male; mean age, 8.9 ± 2.1 years) and 250 control subjects (46.8% male; mean age, 8.7 ± 1.7 years) were analyzed, with mean BDRs of 10.7% ± 10.2% and 2.7% ± 8.4%, respectively. The BDR test differentiated asthmatic patients from nonasthmatic patients with a moderate accuracy (area under the curve, 73.3%). Despite good specificity, a cutoff of 12% was associated with poor sensitivity (35.6%). A cutoff of less than 8% performed significantly better than a cutoff of 12% (P = .03, 8% vs 12%). Conclusions: Our findings highlight the poor sensitivity associated with the commonly used 12% cutoff for BDR. Although our data show that a threshold of less than 8% performs better than 12%, given the variability of this test in children, we conclude that it might be not be appropriate to choose a specific BDR cutoff as a criterion for the diagnosis of asthma.