Person:
Puzey, Joshua

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Puzey

First Name

Joshua

Name

Puzey, Joshua

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Plant MicroRNA Evolution and Mechanisms of Shape Change in Plants
    (2013-02-12) Puzey, Joshua; Kramer, Elena M.; Davis, Charles; Mathews, Sarah; Mahadevan, Lakshminarayanan; Hunter, Craig
    Plant microRNAs have been shown to have important roles in regulating diverse processes ranging from reproductive development to stress response. In the first two chapters, I focus on miRNA diversity in Aquilegia studying both anciently evolved broadly conserved and rapidly evolving species specific miRNAs. In chapter one, I utilize Aquilegia's critical phylogenetic position between the well developed models Arabidopsis thaliana and Oryza sativa to study the evolution of ancient miRNAs across the angiosperms. In chapter two, I utilize smallRNA high-throughput sequencing to annotate Aquilegia specific miRNAs and, in the process, uncover the novel regulation of a floral homeotic gene by an Aquilegia-specific miRNA. In chapter three, I look at the tissue specific development of miRNA regulation in the bioenergetically relevant model organism Populus trichocarpa. High-throughput smallRNA sequencing from four diverse tissue sets including leaves, xylem, mechanically treated xylem, and pooled vegetative and reproductive tissues were analyzed, revealing a total of 155 previously unannotated miRNAs, most of which are P. trichocarpa specific. Expanding on my work with the petal identity pathway, I turned a broader analysis of Aquilegia petal spurs. Petal spurs are the distinguishing characteristic of Aquilegia and are argued to be a key innovation in the adaptive radiation of the genus. In the fourth chapter, I explore the cellular basis of extreme spur length diversity in the genus and find that a single parameter, cell shape, can explain this morphological range. Next, I seek to describe the cellular patterns that give rise to a spur primoridia from an initially flat laminar petal and find that spur initiation is characterized by concentrated, prolonged, and oriented cell divisions. Inspired by this quantitative analysis of growth, chapter five looks at the mechanisms of shape change in cucumber tendrils. I find that anisotropic contraction of a multi-layered gelatinous fiber ribbon explains coiling in cucumbers. Surprisingly, we discover that tendrils display twistless-overwinding when pulled and exhibit an unforeseen force-extension response as a result. These results provide the design basis for twistless springs with tunable mechanical responses and serve as a clear example of how the biological systems can inspire applied mechanical designs.
  • Thumbnail Image
    Publication
    Evolution of Spur-Length Diversity in Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy
    (The Royal Society, 2012) Puzey, Joshua; Gerbode, S. J.; Hodges, S. A.; Kramer, Elena; Mahadevan, Lakshminarayanan
    The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone as the driver of spur growth, we find that Aquilegia petal spurs develop via anisotropic cell expansion. Furthermore, changes in cell anisotropy account for 99 per cent of the spur-length variation in the genus, suggesting that the true evolutionary innovation underlying the rapid radiation of Aquilegia was the mechanism of tuning cell shape.
  • Thumbnail Image
    Publication
    Deep Annotation of Populus trichocarpa MicroRNAs from Diverse Tissue Sets
    (Public Library of Science, 2012) Puzey, Joshua; Karger, Amir; Axtell, Michael; Kramer, Elena
    Populus trichocarpa is an important woody model organism whose entire genome has been sequenced. This resource has facilitated the annotation of microRNAs (miRNAs), which are short non-coding RNAs with critical regulatory functions. However, despite their developmental importance, P. trichocarpa miRNAs have yet to be annotated from numerous important tissues. Here we significantly expand the breadth of tissue sampling and sequencing depth for miRNA annotation in P. trichocarpa using high-throughput smallRNA (sRNA) sequencing. miRNA annotation was performed using three individual next-generation sRNA sequencing runs from separate leaves, xylem, and mechanically treated xylem, as well as a fourth run using a pooled sample containing vegetative apices, male flowers, female flowers, female apical buds, and male apical and lateral buds. A total of 276 miRNAs were identified from these datasets, including 155 previously unannotated miRNAs, most of which are P. trichocarpa specific. Importantly, we identified several xylem-enriched miRNAs predicted to target genes known to be important in secondary growth, including the critical reaction wood enzyme xyloglucan endo-transglycosylase/hydrolase and vascular-related transcription factors. This study provides a thorough genome-wide annotation of miRNAs in P. trichocarpathrough deep sRNA sequencing from diverse tissue sets. Our data significantly expands the P. trichocarpa miRNA repertoire, which will facilitate a broad range of research in this major model system.
  • Thumbnail Image
    Publication
    Identification of Conserved Aquilegia Coerulea MicroRNAs and Their Targets
    (Elsevier, 2009) Puzey, Joshua; Kramer, Elena
    Aquilegia is an emerging model organism that is phylogenetically intermediate between the core eudicot and monocot models, Arabidopsis and Oryza. In this study, we have used a comparative genomics approach to identify 45 Aquilegia microRNAs that comprise 20 separate plant microRNA families. We have predicted 84 targets of these newly identified Aquilegia microRNAs including transcription factors and loci involved in metabolism, stress responses, transport, and auxin signaling. microRNA families from 16 plant species and the newly identified microRNAs from Aquilegia were analyzed in a phylogenetic context revealing 40 distantly conserved microRNA families. In addition to these highly conserved plant microRNA families, several families with disjointed phylogenetic distribution were identified. This study provides a phylogenetically important dataset for plant microRNA evolution studies. The current study is the first to identify miRNAs in a lower eudicot in which comprehensive genomic resources are becoming available.