Publication:
Evolution of Spur-Length Diversity in Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Royal Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Puzey, Joshua R., Sharon J. Gerbode, Scott A. Hodges, Elena M. Kramer, and L. Mahadevan. 2012. Evolution of Spur-Length Diversity in Aquilegia Petals Is Achieved Solely Through Cell-Shape Anisotropy. Proceedings of the Royal Society B 279: 1640–1645.

Research Data

Abstract

The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone as the driver of spur growth, we find that Aquilegia petal spurs develop via anisotropic cell expansion. Furthermore, changes in cell anisotropy account for 99 per cent of the spur-length variation in the genus, suggesting that the true evolutionary innovation underlying the rapid radiation of Aquilegia was the mechanism of tuning cell shape.

Description

Other Available Sources

Keywords

petal shape, cell shape, evolution, pollination syndrome, morphogenesis, nectar spur

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories