Person: Palmer, Adam
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Palmer
First Name
Adam
Name
Palmer, Adam
4 results
Search Results
Now showing 1 - 4 of 4
Publication Directing traffic on DNA—How transcription factors relieve or induce transcriptional interference(Taylor & Francis, 2017) Hao, Nan; Palmer, Adam; Dodd, Ian B.; Shearwin, Keith E.ABSTRACT Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.Publication The role of repressor kinetics in relief of transcriptional interference between convergent promoters(Oxford University Press, 2016) Hao, Nan; Palmer, Adam; Ahlgren-Berg, Alexandra; Shearwin, Keith E.; Dodd, Ian B.Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR–PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI.Publication Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments(Nature Publishing Group, 2016) Chait, Remy; Palmer, Adam; Yelin, Idan; Kishony, RoyAntibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance.Publication Gene-Drug Interactions and the Evolution of Antibiotic Resistance(2013-03-18) Palmer, Adam; Kishony, Roy; Mitchison, Timothy; Springer, Michael; Gore, Jeff; Hung, DeborahThe evolution of antibiotic resistance is shaped by interactions between genes, the chemical environment, and an antibiotic's mechanism of action. This thesis explores these interactions with experiments, theory, and analysis, seeking a mechanistic understanding of how different interactions between genes and drugs can enhance or constrain the evolution of antibiotic resistance. Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline resistant and sensitive bacteria were grown competitively in the presence of tetracycline and its decay products. Antibiotic decay did not only remove selection for resistance, but long-lived decay products favored tetracycline sensitivity by inducing costly drug efflux pumps in the resistant strain. Selection against resistance by antibiotic-related compounds may contribute to the coexistence of drug-sensitive and resistant bacteria in nature. Chapter 2 investigates how genetic interactions can favor particular combinations of resistance-conferring mutations. All possible combinations of a set of trimethoprim resistance-conferring mutations in the drug's target gene were constructed and phenotyped. Incompatibilities between mutations arose in a high-order, not pairwise, manner. One mutation was found to induce this ruggedness and create a multi-peaked adaptive landscape. Chapters 1 and 2 observed that non-optimal expression of a drug resistance gene or a drug's target could compromise antibiotic resistance. Chapter 3 broadly characterizes non-optimal gene expression under antibiotic treatment, using a functional genetic screen to identify over one hundred pathways to antibiotic resistance through positive and negative changes in gene expression. Genes with the potential to confer antibiotic resistance were found to often go unused during antibiotic stress. The optimization of gene expression for drug-free growth was found to cause non-optimal expression under drug treatment, creating a situation where regulatory mutations can confer resistance by correcting errors in gene expression. Chapter 4 investigates whether it is beneficial to up-regulate the genes encoding antibiotic targets when they are inhibited. Drug target genes were quantitatively over-expressed, and drug resistance was found to not always increase, but alternatively to remain unchanged or even decrease. These diverse effects were explained by simple models that consider toxicity arising from gene over-expression, and mechanisms of drug action in which drugs induce harmful enzymatic reactions.