Person:
Alfonso, Denise Marie

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Alfonso

First Name

Denise Marie

Name

Alfonso, Denise Marie

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Publication
    Synthesis of Open-Shell, Bimetallic Mn/Fe Trinuclear Clusters
    (American Chemical Society (ACS), 2013) Powers, Tamara Michelle; Gu, Nina; Fout, Alison R.; Baldwin, Anne M.; Hernández Sánchez, Raúl; Alfonso, Denise Marie; Chen, Yu-Sheng; Zheng, Shao-Liang; Betley, Theodore
    Concomitant deprotonation and metalation of hexadentate ligand platform tbsLH6 (tbsLH6 = 1,3,5-C6H9(NHC6H4-o-NHSiMe2tBu)3) with divalent transition metal starting materials Fe2(Mes)4 (Mes = mesityl) or Mn3(Mes)6 in the presence of tetrahydrofuran (THF) resulted in isolation of homotrinuclear complexes (tbsL)Fe3(THF) and (tbsL)Mn3(THF), respectively. In the absence of coordinating solvent (THF), the deprotonation and metalation exclusively afforded dinuclear complexes of the type (tbsLH2)M2 (M = Fe or Mn). The resulting dinuclear species were utilized as synthons to prepare bimetallic trinuclear clusters. Treatment of (tbsLH2)Fe2 complex with divalent Mn source (Mn2(N(SiMe3)2)4) afforded the bimetallic complex (tbsL)Fe2Mn(THF), which established the ability of hexamine ligand tbsLH6 to support mixed metal clusters. The substitutional homogeneity of (tbsL)Fe2Mn(THF) was determined by 1H NMR, 57Fe Mössbauer, and X-ray fluorescence. Anomalous scattering measurements were critical for the unambiguous assignment of the trinuclear core composition. Heating a solution of (tbsLH2)Mn2 with a stoichiometric amount of Fe2(Mes)4 (0.5 mol equiv) affords a mixture of both (tbsL)Mn2Fe(THF) and (tbsL)Fe2Mn(THF) as a result of the thermodynamic preference for heavier metal substitution within the hexa-anilido ligand framework. These results demonstrate for the first time the assembly of mixed metal cluster synthesis in an unbiased ligand platform.