Publication:
Synthesis of Open-Shell, Bimetallic Mn/Fe Trinuclear Clusters

Thumbnail Image

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Powers, Tamara M., Nina X. Gu, Alison R. Fout, Anne M. Baldwin, Raúl Hernández Sánchez, Denise M. Alfonso, Yu-Sheng Chen, Shao-Liang Zheng, and Theodore A. Betley. 2013. Synthesis of Open-Shell, Bimetallic Mn/Fe Trinuclear Clusters. Journal of the American Chemical Society 135, no. 38: 14448–14458.

Research Data

Abstract

Concomitant deprotonation and metalation of hexadentate ligand platform tbsLH6 (tbsLH6 = 1,3,5-C6H9(NHC6H4-o-NHSiMe2tBu)3) with divalent transition metal starting materials Fe2(Mes)4 (Mes = mesityl) or Mn3(Mes)6 in the presence of tetrahydrofuran (THF) resulted in isolation of homotrinuclear complexes (tbsL)Fe3(THF) and (tbsL)Mn3(THF), respectively. In the absence of coordinating solvent (THF), the deprotonation and metalation exclusively afforded dinuclear complexes of the type (tbsLH2)M2 (M = Fe or Mn). The resulting dinuclear species were utilized as synthons to prepare bimetallic trinuclear clusters. Treatment of (tbsLH2)Fe2 complex with divalent Mn source (Mn2(N(SiMe3)2)4) afforded the bimetallic complex (tbsL)Fe2Mn(THF), which established the ability of hexamine ligand tbsLH6 to support mixed metal clusters. The substitutional homogeneity of (tbsL)Fe2Mn(THF) was determined by 1H NMR, 57Fe Mössbauer, and X-ray fluorescence. Anomalous scattering measurements were critical for the unambiguous assignment of the trinuclear core composition. Heating a solution of (tbsLH2)Mn2 with a stoichiometric amount of Fe2(Mes)4 (0.5 mol equiv) affords a mixture of both (tbsL)Mn2Fe(THF) and (tbsL)Fe2Mn(THF) as a result of the thermodynamic preference for heavier metal substitution within the hexa-anilido ligand framework. These results demonstrate for the first time the assembly of mixed metal cluster synthesis in an unbiased ligand platform.

Description

Other Available Sources

Keywords

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories