Publication: Architecture of Autoinhibited and Active BRAF–MEK1–14-3-3 Complexes
No Thumbnail Available
Date
2019-10-03
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Park, Eunyoung, Shaun Rawson, Kunhua Li, Byeong-Won Kim, Scott B. Ficarro, Gonzalo Gonzalez-Del Pino, Humayun Sharif, Jarrod A. Marto, Hyesung Jeon, and Michael J. Eck. 2019. Architecture of Autoinhibited and Active BRAF-MEK1-14-3-3 Complexes. Nature 575, no. 7783: 545-50.
Research Data
Abstract
RAF family kinases are RAS-activated switches that initiate signaling through the MAP kinase cascade to control cellular proliferation, differentiation and survival1-3. RAF activity is tightly regulated and inappropriate activation is a frequent cause of cancer4-6. At present, the structural basis for RAF regulation is poorly understood. Here we describe autoinhibited and active state structures of full-length BRAF in complexes with MEK1 and a 14-3-3 dimer, determined using cryo electron microscopy (cryo-EM). A 4.1Å resolution cryo-EM reconstruction reveals an inactive BRAF/MEK1 complex restrained in a cradle formed by the 14-3-3 dimer, which binds the phosphorylated S365 and S729 sites that flank the BRAF kinase domain. The BRAF cysteine-rich domain (CRD) occupies a central position that stabilizes this assembly, but the adjacent RAS-binding domain (RBD) is poorly ordered and peripheral. The 14-3-3 cradle maintains autoinhibition by sequestering the membrane-binding CRD and blocking dimerization of the BRAF kinase domain. In the active state, these inhibitory interactions are released and a single 14-3-3 dimer rearranges to bridge the C-terminal pS729 binding sites of two BRAFs, driving formation of an active, back-to-back BRAF dimer. Our structural snapshots provide a foundation for understanding normal RAF regulation and its mutational disruption in cancer and developmental syndromes.
Description
Other Available Sources
Keywords
Multidisciplinary
Terms of Use
Metadata Only