Publication: Mechanically robust lattices inspired by deep-sea glass sponges
Date
2020-09-21
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Fernandes, Matheus C, Aizenberg, Joanna, Weaver, James C, and Bertoldi, Katia. "Mechanically Robust Lattices Inspired by Deep-sea Glass Sponges." Nature Materials 20, no. 2 (2021): 237-41.
Research Data
Abstract
The predominantly deep-sea hexactinellid sponges are known for their ability to construct remarkably complex skeletons from amorphous hydrated silica. The skeletal system from one such example, Euplectella aspergillum, consists of a square-grid-like architecture overlaid with a double set of diagonal bracings, creating a checkerboard-like pattern of open and closed cells. Here, using a combination of finite element simulations and mechanical tests on 3D-printed specimens of different lattice geometries, we show that the sponge’s diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material. Furthermore, using an evolutionary optimization algorithm, we show that our sponge-inspired lattice geometry occurs near the design space’s material distribution optimum. Our results demonstrate that lessons learned from the study of sponge skeletal systems can be exploited for the realization of square lattice geometries that are geometrically optimized to avoid global structural buckling, with implications for improved material use in modern infrastructural applications.
Description
Other Available Sources
Keywords
Mechanical Engineering, General Materials Science, Mechanics of Materials, General Chemistry, Condensed Matter Physics
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service