Publication:
Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation

No Thumbnail Available

Date

2020-08

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal. "Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation." Strategic Management Journal 41, no. 8 (August 2020): 1381–1411.

Research Data

Abstract

The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic behavior by agents. We theorize that domain expertise of users can complement ML by mitigating this bias. Our observational and experimental analyses in the patent examination context support this conjecture. In the face of “input incompleteness,” we find ML is biased towards finding prior art textually similar to focal claims, and domain expertise is needed to find the most relevant prior art. We also document the importance of vintage-specific skills and discuss the implications for artificial intelligence and strategic management of human capital.

Description

Other Available Sources

Keywords

Strategy and Management, Business and International Management

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories