Publication:
Evidence for Degenerate Tetraploidy in Bdelloid Rotifers

Thumbnail Image

Date

2008

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences (USA)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Welch, David B. Mark, Jessica L. Mark Welch, and Matthew Meselson. 2008. Evidence for degenerate tetraploidy in bdelloid rotifers. Proceedings of the National Academy of Sciences USA 105(13): 5145-5149

Research Data

Abstract

Rotifers of class Bdelloidea have evolved for millions of years apparently without sexual reproduction. We have sequenced 45- to 70-kb regions surrounding the four copies of the hsp82 gene of the bdelloid rotifer Philodina roseola, each of which is on a separate chromosome. The four regions comprise two colinear gene-rich pairs with gene content, order, and orientation conserved within each pair. Only a minority of genes are common to both pairs, also in the same orientation and order, but separated by gene-rich segments present in only one or the other pair. The pattern is consistent with degenerate tetraploidy with numerous segmental deletions, some in one pair of colinear chromosomes and some in the other. Divergence in 1,000-bp windows varies along an alignment of a colinear pair, from zero to as much as 20% in a pattern consistent with gene conversion associated with recombinational repair of DNA double-strand breaks. Although pairs of colinear chromosomes are a characteristic of sexually reproducing diploids and polyploids, a quite different explanation for their presence in bdelloids is suggested by the recent finding that bdelloid rotifers can recover and resume reproduction after suffering hundreds of radiation-induced DNA double-strand breaks per oocyte nucleus. Because bdelloid primary oocytes are in G<sub>1</sub> and therefore lack sister chromatids, we propose that bdelloid colinear chromosome pairs are maintained as templates for the repair of DNA double-strand breaks caused by the frequent desiccation and rehydration characteristic of bdelloid habitats.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories