Publication:
Nonnormal Amplification of the Thermohaline Circulation

Thumbnail Image

Date

2005

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Meteorological Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Zanna, Laure, and Eli Tziperman. 2005. Nonnormal amplification of the thermohaline circulation. Journal of Physical Oceanography 35(9): 1593-1605.

Research Data

Abstract

A simple zonally averaged coupled ocean–atmosphere model, with a relatively high resolution in the meridional direction, is used to examine physical mechanisms leading to transient amplification of thermohaline circulation (THC) anomalies. It is found that in a stable regime, in which small perturbations eventually decay, there are optimal initial conditions leading to a dramatic amplification of initial temperature and salinity anomalies in addition to the THC amplification. The maximum amplification occurs after about 40 years, and the eventual decay is on a centennial time scale. The initial temperature and salinity anomalies are considerably amplified by factors of a few hundreds and 20, respectively. The initial conditions leading to this amplification are characterized by mutually canceling initial temperature and salinity anomalies contributions to the THC anomaly, such that the initial THC anomaly vanishes. The mechanism of amplification is analyzed and found to be the result of an interaction between a few damped (oscillatory and nonoscillatory) modes with decay time scales lying in a range of 20–800 years. The amplification mechanism is also found to be distinct from the advective feedback leading to THC instabilities for large freshwater forcing.

Description

Other Available Sources

Keywords

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories