Publication:
High-throughput Gene Expression Profiling of Memory Differentiation in Primary Human T Cells

Thumbnail Image

Date

2008

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Haining, W. Nicholas, Jill Angelosanto, Kathleen Brosnahan, Kenneth Ross, Cynthia Hahn, Kate Russell, Linda Drury, Stephanie Norton, Lee Nadler, and Kimberly Stegmaier. 2008. High-throughput gene expression profiling of memory differentiation in primary human T cells. BMC Immunology 9:44.

Research Data

Abstract

Background: The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1) the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2) a suitable cell-line representative of naive T cells. Results: Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion: This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories