Publication: Incentive Design for Adaptive Agents
Open/View Files
Date
2011
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
International Foundation for Autonomous Agents and Multiagent Systems
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Chen, Yiling, Jerry Kung, David C. Parkes, Ariel D. Procaccia, and Haoqi Zhang. Forthcoming. Incentive Design for Adaptive Agents. In AAMAS '11: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, ed. Pınar Yolum, Kagan Tumer, Peter Stone and Liz Sonenberg, 627-634. Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems.
Research Data
Abstract
We consider a setting in which a principal seeks to induce an adaptive agent to select a target action by providing incentives on one or more actions. The agent maintains a belief about the value for each action—which may update based on experience—and selects at each time step the action with the maximal sum of value and associated incentive. The principal observes the agent’s selection, but has no information about the agent’s current beliefs or belief update process. For inducing the target action as soon as possible, or as often as possible over a fixed time period, it is optimal for a principal with a per-period budget to assign the budget to the target action and wait for the agent to want to make that choice. But with an across-period budget, no algorithm can provide good performance on all instances without knowledge of the agent’s update process, except in the particular case in which the goal is to induce the agent to select the target action once. We demonstrate ways to overcome this strong negative result with knowledge about the agent’s beliefs, by providing a tractable algorithm for solving the offline problem when the principal has perfect knowledge, and an analytical solution for an instance of the problem in which partial knowledge is available.
Description
Keywords
algorithms, economics, theory, coordination, economically-motivated agents, multiagent sysstem, principal-agent problem
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service