Publication:
Narrow Band Defect Luminescence from AI-doped ZnO Probed by Scanning Tunneling Cathodoluminescence

Thumbnail Image

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Likovich, Edward M., Rafael Jaramillo, Kasey J. Russell, Shriram Ramanathan, and Venkatesch Narayanamurti. 2011. Narrow band defect luminescence from AI-doped ZnO probed by scanning tunneling cathodoluminescence. Applied Physics Letters 99(15): 151910.

Research Data

Abstract

We present an investigation of optically active near-surface defects in sputtered Al-doped ZnO films using scanning tunneling microscope cathodoluminescence (STM-CL). STM-CL maps suggest that the optically active sites are distributed randomly across the surface and do not correlate with the granular topography. In stark contrast to photoluminescence results, STM-CL spectra show a series of sharp, discrete emissions that characterize the dominant optically active defect, which we propose is an oxygen vacancy. Our results highlight the ability of STM-CL to spectrally fingerprint individual defects and contribute to understanding the optical properties of near-surface defects in an important transparent conductor.

Description

Other Available Sources

Keywords

aluminium, cathodoluminescence, defect states, II-VI semiconductors, photoluminescence, scanning tunnelling microscopy, semiconductor thin films, sputter deposition, wide band gap semiconductors, zinc compounds

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories